4、视觉里程计:特征点法、直接法和半直接法

先说一下我自己的总体理解:

特征点法,基于最小化重投影误。

提取特征点,计算描述子,匹配,运动估计。

计算描述子和匹配部分可以用光流法跟踪替代

总体上先知道像素之间的关系,在估计运动(最小化重投影误)。

直接法是从光流演变而来的,基于最小化光度误差。

不需要点与点之间的对应关系。

光流描述像素在图像中的运动,直接法则是直接对运动位姿进行优化(最小化光度误差寻找最好的位姿

半直接法则是结合一下。

一、特征点法:

特征点法(Feature-based Methods)是一种通过提取、描述和匹配图像中的显著特征点来估计相机运动的方法。它在视觉里程计(VO)和SLAM(同步定位与地图构建)中广泛应用。以下将详细介绍特征点法的各个步骤及其优缺点。

特征点法的基本步骤

  1. 特征检测
  2. 特征描述
  3. 特征匹配
  4. 运动估计
  5. 优化与滤波

1. 特征检测

特征检测是特征点法的第一步,旨在找到图像中显著且易于识别的特征点。常见的特征检测算法有:

  • Harris角点检测器:检测图像中的角点。
  • FAST(Features from Accelerated Segment Test):快速检测角点,适用于实时应用。
  • SIFT(Scale-Invariant Feature Transform):检测尺度不变的特征点,适用于尺度和旋转变化的环境。
  • SURF(Speeded-Up Robust Features):类似SIFT,但速度更快。
  • ORB(Oriented FAST and Rotated BRIEF):结合FAST和BRIEF描述子的特征检测器,适合实时应用。

2. 特征描述

特征描述的目的是为每个检测到的特征点生成一个独特的描述子,用于匹配和识别。常见的特征描述算法有:

  • SIFT描述子:基于梯度方向直方图,具有良好的鲁棒性。
  • SURF描述子:类似于SIFT描述子,但计算速度更快。
  • BRIEF(Binary Robust Independent Elementary Features):基于二进制模式的描述子,计算效率高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水理璇浮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值