先说一下我自己的总体理解:
特征点法,基于最小化重投影误。
提取特征点,计算描述子,匹配,运动估计。
计算描述子和匹配部分可以用光流法跟踪替代
总体上先知道像素之间的关系,在估计运动(最小化重投影误)。
直接法是从光流演变而来的,基于最小化光度误差。
不需要点与点之间的对应关系。
光流描述像素在图像中的运动,直接法则是直接对运动位姿进行优化(最小化光度误差寻找最好的位姿)
半直接法则是结合一下。
一、特征点法:
特征点法(Feature-based Methods)是一种通过提取、描述和匹配图像中的显著特征点来估计相机运动的方法。它在视觉里程计(VO)和SLAM(同步定位与地图构建)中广泛应用。以下将详细介绍特征点法的各个步骤及其优缺点。
特征点法的基本步骤
- 特征检测
- 特征描述
- 特征匹配
- 运动估计
- 优化与滤波
1. 特征检测
特征检测是特征点法的第一步,旨在找到图像中显著且易于识别的特征点。常见的特征检测算法有:
- Harris角点检测器:检测图像中的角点。
- FAST(Features from Accelerated Segment Test):快速检测角点,适用于实时应用。
- SIFT(Scale-Invariant Feature Transform):检测尺度不变的特征点,适用于尺度和旋转变化的环境。
- SURF(Speeded-Up Robust Features):类似SIFT,但速度更快。
- ORB(Oriented FAST and Rotated BRIEF):结合FAST和BRIEF描述子的特征检测器,适合实时应用。
2. 特征描述
特征描述的目的是为每个检测到的特征点生成一个独特的描述子,用于匹配和识别。常见的特征描述算法有:
- SIFT描述子:基于梯度方向直方图,具有良好的鲁棒性。
- SURF描述子:类似于SIFT描述子,但计算速度更快。
- BRIEF(Binary Robust Independent Elementary Features):基于二进制模式的描述子,计算效率高。