【YOLOv8系列】(二)YOLOv8环境配置,手把手嘴对嘴保姆教学

目录

一. 准备环境

1.Anaconda下载

2.创建yolov8虚拟环境

3.pytorch安装

4.CUDA下载

5.CUDNN下载

二、yolov8模型下载

1.clone模型

2.pycharm配置

①解释器配置

②终端配置 

3.安装必要库 

4.下载训练模型

三、 环境验证

四、总结


YOLOv8 是 YOLO 系列最新的目标检测模型,具有高效性和高准确度。本文将详细介绍如何在本地环境中配置 YOLOv8,包括环境搭建、依赖安装、模型下载和基本使用示例。

本系列其他文章

【YOLOv8系列】(一)YOLOv8介绍:实时目标检测的最新突破-CSDN博客

一. 准备环境

1.Anaconda下载

Anaconda 是一个开源的 Python 和 R 语言的发行版,致力于简化数据科学、机器学习、人工智能和大数据的包管理和部署。它包含了大量流行的数据科学包,并且通过 Conda 包管理器提供了便捷的包安装、更新和管理方式。

Download Anaconda Distribution | AnacondaDownload Anaconda's open-source Distribution today. Discover the easiest way to perform Python/R data science and machine learning on a single machine.https://www.anaconda.com/download

选择适合自己系统的Anaconda软件下载,然后按照步骤安装在除C盘以外的磁盘。

注意:在这一步骤需要勾选以上选项,其他步骤默认点击next安装即可 

2.创建yolov8虚拟环境

在电脑左下角搜索Anaconda,点击打开Anaconda Prompt

 创建新的虚拟环境yolov8

conda create -n yolov8 python=3.8

激活yolov8环境

conda activate yolov8

3.pytorch安装

Win+R输入cmd命令弹出对话框后。输入命令,nvidia-smi自己电脑是否有GPU,如果有,CUDA版本是多少。如果没有则安装CPU版本的pytoch,跳过后续CUDA以及CUDNN步骤。

nvidia-smi

进入PyTorch官网,查看对应自己电脑情况的安装命令PyTorchhttps://pytorch.org/

4.CUDA下载

打开CUDA Toolkit Archive | NVIDIA Developer官网

CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive 选择自己电脑版本的CUDA,例如CUDA Toolkit 11.6.1

 依次选择系统等信息,然后点击下载到电脑。默认安装即可,记录下安装路径

安装完成后,【右击此电脑】—>【属性】—>(界面右边)【高级系统设置】—>【环境变量】—>点击【系统变量】里的path进去查看环境变量。需要有一下环境变量,若没有安装默认安装路径自行添加。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\libnvvp

C:\Program Files\NVIDIA Corporation\Nsight Compute 2022.1.1\

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin

5.CUDNN下载

https://developer.nvidia.com/rdp/cudnn-archivehttps://developer.nvidia.com/rdp/cudnn-archive

将下载解压后将所有文件拷贝CUDA目录里,例如CUDA默认路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

二、yolov8模型下载

1.clone模型

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLiteNEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite - ultralytics/ultralyticshttps://github.com/ultralytics/ultralytics

可以直接下载zip压缩文件,或者安装Git输入以下命令克隆ultralytics项目 

git clone https://github.com/ultralytics/ultralytics.git

下载完了之后目录如下: 

很多小伙伴说目前GitHub只有v11版本了,这里博主提供v8版本资源供大家下载

https://download.csdn.net/download/weixin_44765053/90528444https://download.csdn.net/download/weixin_44765053/90528444

2.pycharm配置

①解释器配置

将下载下来的ultralytics文件夹使用pycharm打开,进入文件 —> 设置界面,找到解释器选项。选择你希望使用的 Anaconda 环境作为解释器,并进行配置。

 点击添加本地解释器—>现有—>yolov8的conda虚拟环境下的python.exe

②终端配置 

打开Anaconda Prompt所在文件,右键属性查看目标位置,复制cmd.exe以及后面的内容。

同样地,文件—>设置—>工具—>终端,将以上复制的路径填入shell路径。

3.安装必要库 

在pycharm终端输入pip安装命令等待安装完成。

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install yolo -i https://pypi.tuna.tsinghua.edu.cn/simple

4.下载训练模型

 在GitHub项目仓,README往下翻可以看见预测、分类、分割等模型,点击即可下载。https://github.com/ultralytics/ultralyticshttps://github.com/ultralytics/ultralytics

或者如果网络不太好,可以使用脚本下载或者直接下载我上传的资源

首先需要新建一个model.txt,包含需要下载模型的地址。

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt

然后运行以下python脚本进行下载。 

#!usr/bin/env python
# encoding:utf-8
from __future__ import division
 
import os
import time
import logging
import subprocess
import urllib
import requests
import torch
import random
from pathlib import Path
 
def autoDownload(filePath, downloadDir):
    if not os.path.exists(downloadDir):
        os.makedirs(downloadDir)
    while True:
        with open(filePath) as f:
            lists = [one.strip() for one in f.readlines() if one.strip()]
        count = 0
        for downloadUrl in lists:
            print("模型下载地址: ", downloadUrl)
            try:
                tmpFile = downloadDir + downloadUrl.split("/")[-1].strip()
                print("下载文件路径: ", tmpFile)
                if not os.path.exists(tmpFile):
                    torch.hub.download_url_to_file(downloadUrl, str(tmpFile))
                else:
                    print("当前训练模型文件已经下载完成!")
                    count += 1
            except Exception as e:
                print("Exception: ", e)
                time.sleep(random.randint(1, 5))
        print("下载数量为: ", count)
        if count == len(lists):
            break
 
if __name__ == "__main__":
 
    autoDownload(filePath="model.txt", downloadDir="model/")

等待.pt模型下载完毕即可

三、 环境验证

在终端输入以下命令进行预测,打开runs/detect/predict查看预测结果

yolo predict model=./model/yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

  

可以看到yolov8的效果是非常棒的,除了person以及bus,甚至连stop sign都检测出来了。

四、总结

通过以上步骤,你应该已经成功配置好YOLOv8的环境。接下来你可以进行模型训练和推理,期待你在目标检测任务中取得好成绩!如果有任何问题,欢迎在评论区讨论。 

如果以上内容对您有帮助,可以三连打赏订阅本专栏哦, 谢谢~

### 配置 PyCharm 支持 YOLOv11 开发环境 #### 创建 Anaconda 虚拟环境并安装依赖项 为了确保开发环境稳定,推荐使用 Anaconda 来管理 Python 环境。创建一个新的虚拟环境,并激活该环境。 ```bash conda create -n yolov11_env python=3.9 conda activate yolov11_env ``` 接着,在此环境中安装必要的库和工具: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install ultralytics==8.0.20 # 假设YOLOv11对应的是这个版本号,请根据实际情况调整 ``` #### 导入项目到 PyCharm 并配置解释器 启动 PyCharm 后,通过 `File -> Open` 或者直接拖拽的方式导入本地克隆下来的 YOLOv11 仓库文件夹。完成加载后,需确认 IDE 使用正确的 Python 解释器。 进入 `Settings/Preferences | Project: yolov11_project_name | Python Interpreter` 页面,点击齿轮图标选择 "Add..." ,然后挑选之前建立好的 Conda Environment (`yolov11_env`)作为当前项目的默认解释器[^2]。 #### 安装额外的包和支持 CUDA 加速 (如果适用) 对于 GPU 训练的支持,需要保证已正确安装 NVIDIA 的驱动程序以及对应的 CUDA Toolkit 版本。可以通过如下命令来验证 PyTorch 是否能够访问到可用的 GPU 设备: ```python import torch print(torch.cuda.is_available()) ``` 如果有多个显卡设备,则可以进一步测试特定编号的 GPU 可用性: ```python device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model().to(device) ``` #### 运行预测脚本前的准备事项 在尝试执行任何训练或推理操作之前,务必先检查所有前置条件都已被妥善处理完毕。这包括但不限于数据集路径设定、模型权重初始化等具体细节[^1]。
评论 210
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

到点就困告

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值