pandas 数据清洗(Personal Notes)

本文介绍了如何使用Pandas库对数据_pandas.csv进行清洗,包括处理缺失值、填充常用统计量(平均值、中位数和众数),以及修改特定行和列的操作。通过实例演示了如何应用这些技巧来提升数据质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A demo of pandas , 数据清洗

data_pandas.csv:

Models,col-0,col-1,col-2,col-3
A,0.1,,0.4,0.5
B,0.2,0.6,,0.1
C,0.6,,0.2,0.8
D,0.1,0.2,0.3,0.4
import pandas as pd
import numpy as np


#
# n = 30
# m = 5
# index = ["line-{}".format(i) for i in range(n)]
# columns = ["col-{}".format(i) for i in range(m)]
# df = pd.DataFrame(
#     np.random.randn(n, m),
#     index=index,
#     columns=columns
# )

df = pd.read_csv("data_pandas.csv")
print(df)
print(df['col-1'].isnull())

filldata = df['col-1'].mean()
filldata = df['col-1'].median()
filldata = df['col-1'].mode()
df.fillna(filldata, inplace=True) # replace NaN with mean of that column

df.loc[3,'col-0'] = 100

# df.dropna(subset=['col-1'], inplace=True) # drop lines which contain NaN in col-1

# df.dropna(inplace=True)
print(df.info())
for i in df.index:
    for j in ['col-{}'.format(x) for x in range(4)]:
        if df.loc[i, j]<0.3:
             df.loc[i,j] = 200

print(df)
# newdf = df['col-1'].dropna()
# newdf = df.dropna() # 删除包含空数据的行
# print(newdf)

# print(df.columns)
# print(df.loc[['line-0','line-1']])
# # print(df[['col-0','col-1']])
# print("thisisit")
# print(df.loc[['line-1']]['col-0'])
# df.loc[['line-1']]['col-0'] = 100
# print(df.loc[['line-0','line-1']])


# terminal:
  Models  col-0  col-1  col-2  col-3
0      A    0.1    NaN    0.4    0.5
1      B    0.2    0.6    NaN    0.1
2      C    0.6    NaN    0.2    0.8
3      D    0.1    0.2    0.3    0.4
0     True
1    False
2     True
3    False
Name: col-1, dtype: bool
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 5 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   Models  4 non-null      object 
 1   col-0   4 non-null      float64
 2   col-1   2 non-null      float64
 3   col-2   3 non-null      float64
 4   col-3   4 non-null      float64
dtypes: float64(4), object(1)
memory usage: 288.0+ bytes
None
  Models  col-0  col-1  col-2  col-3
0      A  200.0    NaN    0.4    0.5
1      B  200.0    0.6    NaN  200.0
2      C    0.6    NaN  200.0    0.8
3      D  100.0  200.0    0.3    0.4

Process finished with exit code 0

在这里插入图片描述
在这里插入图片描述

len(my_dataframe) & my_dataframe.size()

在这里插入图片描述

df.drop_duplicates([‘column0’,‘column1’]), value_counts()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值