Redis开发规范

目录

1、key设计技巧

2、value设计

3、命令使用

3.1 禁用命令

3.2 合理使用select

3.3 使用批量操作提高效率

3.4 不建议过多使用Redis事务功能

4、客户端使用

4.1 避免多个应用使用一个Redis实例

4.2 使用连接池


1、key设计技巧

1.1 可读性和可管理性

以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id

trade:order:1

示例:

1、把表名转换为key前缀,如 tag:
2、把第二段放置用于区分key的字段,对应msyql中主键的列名,如 user_id
3、第三段放置主键值,如 2,3,4
4、第四段写存储的列名

示例:

# 表名 主键 主键值 存储列名字
set user:user_id:1:name baizhan
set user:user_id:1:age 20

#查询这个用户
keys user:user_id:9*

1.2 简洁性

保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:

user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}

1.3 不要包含特殊字符

反例:包含空格、换行、单双引号以及其他转义字符

2、value设计

2.1 拒绝bigkey(防止网卡流量、慢查询)

        在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。

1. 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。

2. 非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。

一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。

反例:一个包含200万个元素的list。

非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞)

bigkey的危害:

1.导致redis阻塞

2.网络拥塞

        bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。

3. 过期删除

        有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazyexpire yes),就会存在阻塞Redis的可能性。

bigkey的产生

一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几
个例子:

(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。

(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。

(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。

如何优化bigkey

1. 拆

big list: list1、list2、...listN

big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成
200个key,每个key下面存放5000个用户数据

2. 如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理。

2.2 选择适合的数据类型

例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡)
反例:

set user:1:name tom
set user:1:age 19
set user:1:favor football

正例:

hmset user:1 name tom age 19 favor football

2.3 控制key的生命周期,redis不是垃圾桶

建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。

3、命令使用

3.1 O(N)命令关注N的数量

例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。

有遍历的需求可以使用hscan、sscan、zscan代替。

3.2 禁用命令

        禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

3.3 合理使用select

        redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

3.4 使用批量操作提高效率

  • 原生命令:例如mget、mset。
  • 非原生命令:可以使用pipeline提高效率。

注意:

  • 但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。

注意两者不同:

  • 原生命令是原子操作,pipeline是非原子操作。
  • pipeline可以打包不同的命令,原生命令做不到
  • pipeline需要客户端和服务端同时支持。

3.5 不建议过多使用Redis事务功能

        Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上。

不建议过多使用,可以用lua替代.

4、客户端使用

  • Jedis :https://github.com/xetorthio/jedis 重点推荐
  • Spring Data redis :https://github.com/spring-projects/spring-data-redis 使用Spring框架时推荐
  • Redisson :https://github.com/mrniko/redisson 分布式锁、阻塞队列的时重点推荐

4.1 避免多个应用使用一个Redis实例

        不相干的业务拆分,公共数据做服务化。

4.2 使用连接池

        可以有效控制连接,同时提高效率,标准使用方式:

执行命令如下:
Jedis jedis = null;
try {
jedis = jedisPool.getResource();
//具体的命令
jedis.executeCommand()
} catch (Exception e) {
logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
if (jedis != null)
jedis.close();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值