pyspark dataframe使用方法汇总

Pyspark Dataframe

1.对spark数据帧中的不同列求和
df = df.withColumn('sum1', sum([df[col] for col in ["A.p1","B.p1"]]))

2.选择几列的方法
color_df.select('length','color').show()

3. when操作
from pyspark.sql.functions import when
# 1.case when age=2 then 3 else 4
df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).show()

# 2.case when age=2 when age=age+1 
df.select(when(df.age == 2, df.age + 1).alias("age")).show()

#case when age<2 then age+2 else age end
df.withColumn('age', when(df.age == 2, df.age + 1).otherwise(df2['age'])).show()


4.对其中大于1的值进行操作使其等于1 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山林里的迷路人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值