B. Gifts Fixing

探讨在保持公平的前提下,将多种礼物平均分配给儿童的算法难题。目标是最小化调整礼物中糖果和橙子数量所需的操作次数,通过实例解析高效解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You have n gifts and you want to give all of them to children. Of course, you don’t want to offend anyone, so all gifts should be equal between each other. The i-th gift consists of ai candies and bi
oranges.
During one move, you can choose some gift 1≤i≤n and do one of the following operations:
eat exactly one candy from this gift (decrease ai by one);
eat exactly one orange from this gift (decrease bi by one);
eat exactly one candy and exactly one orange from this gift (decrease both ai and bi by one).
Of course, you can not eat a candy or orange if it’s not present in the gift (so neither ai nor bi can become less than zero).
As said above, all gifts should be equal. This means that after some sequence of moves the following two conditions should be satisfied: a1=a2=⋯=an and b1=b2=⋯=bn (and ai equals bi is not necessary).
Your task is to find the minimum number of moves required to equalize all the given gifts.
You have to answer t independent test cases.
Input

The first line of the input contains one integer t (1≤t≤1000) — the number of test cases. Then t
test cases follow.

The first line of the test case contains one integer n (1≤n≤50) — the number of gifts. The second line of the test case contains n integers a1,a2,…,an (1≤ai≤109), where ai is the number of candies in the i-th gift. The third line of the test case contains n integers b1,b2,…,bn (1≤bi≤109), where bi is the number of oranges in the i-th gift.
Output
For each test case, print one integer: the minimum number of moves required to equalize all the given gifts.
Example
Input

5
3
3 5 6
3 2 3
5
1 2 3 4 5
5 4 3 2 1
3
1 1 1
2 2 2
6
1 1000000000 1000000000 1000000000 1000000000 1000000000
1 1 1 1 1 1
3
10 12 8
7 5 4

Output
Copy

6
16
0
4999999995
7

Note

In the first test case of the example, we can perform the following sequence of moves:
choose the first gift and eat one orange from it, so a=[3,5,6] and b=[2,2,3];
choose the second gift and eat one candy from it, so a=[3,4,6] and b=[2,2,3];
choose the second gift and eat one candy from it, so a=[3,3,6] and b=[2,2,3];
choose the third gift and eat one candy and one orange from it, so a=[3,3,5] and b=[2,2,2];
choose the third gift and eat one candy from it, so a=[3,3,4] and b=[2,2,2];
choose the third gift and eat one candy from it, so a=[3,3,3]and b=[2,2,2].

#include<iostream>
using namespace std;
typedef long long LL;
LL aa[10010],bb[10010];
using namespace std;
int main()
{
	LL t;
	cin>>t;
	while(t--)
	{
		LL n,a=1e10+1,b=1e10+1,res=0;
		cin>>n;
		for(LL i=0;i<n;i++)
		{
			cin>>aa[i];
			a=min(a,aa[i]);
		}
		for(LL i=0;i<n;i++)
		{
			cin>>bb[i];
			b=min(b,bb[i]);
		}
		for(LL i=0;i<n;i++)
			res+=max(aa[i]-a,bb[i]-b);
		cout<<res<<endl;
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值