在用tensorflow时可能会遇到一部分版本问题,可能出现一些错误,比如在矩阵相乘时会遇到上面的报错。
def add_layer(inputs, in_size, out_size, activion_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activion_function is None:
outputs = Wx_plus_b
else:
outputs = activion_function(Wx_plus_b)
return outputs
错误:
TypeError: Input 'b' of 'MatMul' Op has type float32 that does not match type float64 of argument 'a'.
这是由于两个相乘矩阵类型不匹配,inputs和weights矩阵类型不同,调用函数tf.cast()修改:
Wx_plus_b = tf.matmul(tf.cast(inputs, tf.float32), Weights) + biases
全部代码:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
def add_layer(inputs, in_size, out_size, activion_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(tf.cast(inputs, tf.float32), Weights) + biases
if activion_function is None:
outputs = Wx_plus_b
else:
outputs = activion_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1,300)[:,np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(x_data, 1, 10, activion_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activion_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
print(sess.run(loss, feed_dict={xs:x_data, ys: y_data}))
部分结果:
0.0029057364
0.0028626956
0.0028261426
0.0027990032
0.002778266
0.0027609435
0.0027473026
0.0027361903
0.0027281959