ttensorflow版本问题出现的错误(矩阵相乘)

本文解决在使用TensorFlow进行矩阵运算时遇到的类型不匹配错误,通过调整输入数据类型确保运算正确进行,避免TypeError。示例代码展示了如何在神经网络训练中应用这一修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在用tensorflow时可能会遇到一部分版本问题,可能出现一些错误,比如在矩阵相乘时会遇到上面的报错。

def add_layer(inputs, in_size, out_size, activion_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))

    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activion_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activion_function(Wx_plus_b)
    return outputs

错误:

TypeError: Input 'b' of 'MatMul' Op has type float32 that does not match type float64 of argument 'a'.

这是由于两个相乘矩阵类型不匹配,inputs和weights矩阵类型不同,调用函数tf.cast()修改:

    Wx_plus_b = tf.matmul(tf.cast(inputs, tf.float32), Weights) + biases

全部代码:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import numpy as np


def add_layer(inputs, in_size, out_size, activion_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))

    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(tf.cast(inputs, tf.float32), Weights) + biases
    if activion_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activion_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1, 1,300)[:,np.newaxis]

noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

l1 = add_layer(x_data, 1, 10, activion_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activion_function=None)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)


for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        print(sess.run(loss, feed_dict={xs:x_data, ys: y_data}))


部分结果:
0.0029057364
0.0028626956
0.0028261426
0.0027990032
0.002778266
0.0027609435
0.0027473026
0.0027361903
0.0027281959

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值