自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(299)
  • 收藏
  • 关注

原创 接口自动化测试面试复盘:一个老测试人的肺腑之言

新人常被问:“接口测试和UI测试有什么区别?标准答案背得滚瓜烂熟:“速度快、稳定性高、适合CI……”但你有没有想过,这些话对开发、对项目经理来说意味着什么?举个例子:我们之前做电商系统,每次发版前要做一轮完整的下单流程回归。UI自动化跑一遍要4小时,还经常因为页面元素变了而失败。后来我们把核心链路(登录 → 加购 → 提交订单 → 支付)全部改成接口自动化,执行时间压缩到35分钟,失败率下降80%。它不是为了炫技,而是为了解决交付效率的问题。

2025-08-27 09:01:45 334

原创 通义千问VL-Plus:当AI“看懂”屏幕,软件测试的OCR时代正式终结!

它不会取代你,但会取代不用AI的你你的核心价值将从“写脚本”转向“设计提示词”“验证AI逻辑”“解读业务风险”最后送大家一句我的座右铭“工具决定下限,思维决定上限——用OCR的人在修bug,用VL-Plus的人在预防bug。立即行动用你的最新失败截图调用VL-Plus体验版在评论区分享结果,我会抽取3位读者定制测试Prompt方案!转发给那个还在手动比对截图的同事✨✨。

2025-08-21 23:37:04 1004

原创 AI重塑软件测试:质量保障的下一站

简单来说,就是把人工智能、机器学习这些技术用在软件测试的各个环节,从用例生成、数据准备、自动化执行、结果分析,到脚本自愈、缺陷定位。和传统自动化的“写死规则、写爆脚本”不同,AI测试工具能自我学习、动态适应、自动生成测试内容,甚至能和你用“人话”沟通需求。它的本质:让测试不再死板机械,变得主动、灵活、有预判力。AI软件测试不是未来的畅想,而是现在正在发生的变革。它让测试工程师摆脱机械重复,让测试流程更智能、更高效、更有乐趣。虽然挑战不少,但收获更大。

2025-08-20 23:22:15 637

原创 测试工程师面试突围战:20个高频Linux指令深度解析(附记忆心法)

面试考Linux,本质是考察问题拆解能力——你能否把模糊的"服务报错",转化为精准的"grep ERROR | awk ‘{print $4}’ | sort | uniq -c"。记住:测试工程师不需要成为Linux专家,但必须能用指令把问题说得清、证据拿得准。💡终极心法命令记不住?那就每天用它解决一个实际问题!今天起,每次测试都问自己:“如果只给一台Linux服务器,我怎么验证这个功能?“看这里,日志显示XXX,结合top数据YYY,问题出在ZZZ…”附:面试自测清单(30秒挑战)

2025-08-19 21:55:12 900

原创 测试工程师面试必看:那些躲不掉的SQL问题

面试考SQL,本质是考察数据验证思维——你能否绕过界面,直击数据核心?记住:测试工程师不需要成为SQL大师,但必须能用简单查询快速定位问题。下次面试被问“怎么查重复数据”,别慌!掏出,再配上一句:“这能帮我验证注册功能是否防重,避免用户重复提交”,绝对让面试官眼前一亮。💡终极心法:SQL不是背出来的,是“用”出来的。今天起,每次测试都问自己:“如果直接查数据库,该怎么验证?” 两周后,你就是团队里的“数据侦探”!附:面试自测清单(30秒速测)能否写出查“昨天退款订单”的SQL?能解释为什么测试中。

2025-08-18 15:51:45 667

原创 AI智能体在软件测试中的应用与未来趋势

AI智能体(AI Agent)是能够自主分析数据、做出决策并执行任务的软件程序。在软件测试领域,AI智能体的主要目标是自动化测试执行、分析应用行为、预测缺陷并持续优化测试用例。与传统的自动化脚本不同,AI智能体具备“学习能力”,能够适应应用变化,实现自愈和智能优化。简而言之,AI智能体就像一位虚拟测试工程师:可以根据历史测试结果持续进化,主动发现问题、修复脚本,并在无需人工干预的情况下高效完成复杂测试任务。AI智能体正以惊人的速度重塑软件测试行业。

2025-08-15 22:28:07 911

原创 QA从未消亡:为什么即使是大厂也离不开测试

每个团队、每种产品,都需要自己的质量保障方案。你不需要照搬谷歌、Meta的QA体系,但你必须有一套适合自己的QA流程——能让团队对产品质量有把控、有分工、有复盘、有提升,这才是“QA不死”的真正意义。

2025-08-14 23:07:35 268

原创 利用生成式AI与大语言模型(LLM)革新自动化软件测试 —— 测试工程师必读深度解析

生成式AI:能基于历史数据自动生成文本、代码、测试数据等“新内容”,而不仅是分类或预测。大语言模型(LLM):如GPT系列,训练自海量文本和代码,具备理解上下文、自然语言和代码的能力。上手即用(few-shot/zero-shot learning)能处理多模态数据(文本、代码、图片等)生成式AI与LLM正在深刻改变自动化测试的方式,推动测试向更智能、自适应、全面的方向发展。尽管仍有挑战,但其带来的高覆盖率、高效率和深度集成能力已成为推动软件工程进步的重要动力。未来,人机协同智能测试。

2025-08-13 22:04:11 707

原创 测试自动化框架全解读:为什么、类型、优势与最佳实践

测试自动化框架,是指一套结构化的准则、规则和最佳实践,旨在高效地创建、组织和执行自动化测试用例。它不仅仅是代码结构,更是流程、工具、协议的有机结合,支撑着整个测试自动化活动。框架本质上为测试人员提供了一个系统化环境,开发可复用的自动化测试脚本,定位应用对象,自动执行操作,并校验预期结果。这种标准化极大提升了资源利用率、测试可靠性,并简化了后期维护。简单来说,测试自动化框架就是自动化测试的地基,它让复杂的测试工作变得有序、可控、可持续。自动化测试框架是现代软件开发不可或缺的质量保障基石。

2025-08-12 22:47:03 436

原创 2025年软件测试工程师必备技能全解读

你的岗位在升级,只有不断学习、不断适应,才能跟得上行业需求。技术+沟通+分析,三条腿走路,才能成为真正的“高级测试工程师”。不要把自己局限在“只会手工点点点”,要主动拥抱变化,成为团队不可替代的一员。你认同文中观点吗?你准备好做一个“全面型”的测试工程师了吗?欢迎和同行们一起交流、成长!如果你有具体技能提升或者职业规划的问题,欢迎随时问我!

2025-08-10 23:14:22 516

原创 2025年,AI不会取代你,但会逼你进化:写给软件测试工程师的一封信

我知道,面对变化,你会慌。新技术、新工具、新术语,扑面而来。AI再强,也写不出“用户为什么生气”;自动化再快,也想不到“老人不会用这个按钮”。这些,只有你有。你的价值,从来不在于“点了多少次页面”,而在于“想到了多少种可能”。所以,别问“AI会不会取代我”。我有没有开始学一点AI测试?我能不能看懂一份模型报告?我敢不敢在会议上说“这个设计有问题”?未来的测试工程师,不是被AI淘汰的人,而是驾驭AI的人。你不必成为程序员,但你要懂技术;你不必成为数据科学家,但你要会提问;

2025-08-09 23:09:44 949

原创 基于LLM的Chat应用测试方法探索:系统化评估与持续优化

基于LLM的Chat应用测试必须兼顾准确性、健壮性、性能、隐私和用户体验,应通过多维度、多场景的系统化测试方法,持续优化和提升对话系统的实际表现。本文提出的测试方法论涵盖了从核心能力到智能代理的两阶段评估框架,结合了红队测试、多轮对话评估和自动化测试工具,形成了一套全面、规范、安全且实用的测试体系。在实际应用中,测试方法应根据具体行业和场景进行适配,如医疗领域需关注隐私保护和诊断准确性,金融领域需关注合规性和风险评估,法律领域需关注法律条款引用的准确性和合规性。

2025-08-08 21:45:43 753

原创 回归测试:2025年深入指南

回归测试的字面意思是返回到以前的状态或条件。它是测试生命周期的重要组成部分,无论您是在检查简单的Web应用程序功能还是复杂的端到端业务工作流。回归测试能够保护应用程序和流程在软件演变过程中不受缺陷影响。测试新功能测试现有功能回归测试专注于后者。当新的代码更改被引入时,回归测试会确保这些修改正常工作,同时不影响现有功能。由于每次更新都有可能导致用户体验中断,回归测试成为识别和修复回归问题的安全网。重测(也称确认测试)是一种针对特定缺陷的测试方法。

2025-08-07 00:21:40 559

原创 当前就业形势下,软件测试工程师职业发展与自我提升的必要性

软件测试行业正处于深刻变革期,2025年的市场已超越400亿美元规模,预计2027年将增长7%。。通过深入分析行业现状与人才需求趋势,可以清晰看到:掌握自动化测试技术、编程语言、测试管理工具等核心技能,不仅决定了薪资水平的差异(从3K到30K+的悬殊差距),更关系到职业发展的上限与可持续性。本文将从行业现状、技能价值、进阶路径和长期规划四个维度,阐述测试工程师自我提升的必要性与实施策略。

2025-08-06 23:44:25 1456

原创 测试工程师需要了解的最佳Python测试框架TOP10

Python测试框架,是指为了提升代码质量、自动化测试流程、支撑持续集成/持续交付(CI/CD)而设计的一系列工具和库。无需重复造轮子,开发者与测试工程师可借助这些框架,实现单元测试、集成测试、行为驱动开发(BDD)、验收测试等多种场景的自动化验证。自动发现和执行测试用例提供断言机制与丰富的测试报告支持测试夹具(Fixture)、参数化和Mock集成持续集成/持续交付管道自动化测试已成为现代软件工程不可或缺的一部分。选择合适的Python测试框架,不仅能提升开发效率,还能保障软件质量。

2025-08-05 22:40:43 977

原创 用LangGraph实现聊天机器人记忆功能的深度解析

在现代对话系统开发中,保持良好的对话上下文一致性是一项核心挑战。本文将详细解析如何利用 LangGraph 框架的检查点(Checkpointing)机制,实现聊天机器人多轮对话记忆功能。通过代码示例和架构分析,我们将展示如何构建具备持久化对话记忆的智能助手,为实际业务中的客户服务、知识问答等场景提供可靠支撑。借助 LangGraph 检查点机制,开发者可以快速构建具备记忆和纠错能力的现代对话系统。无论是客服、知识问答还是自动化助手,基于检查点的设计都能显著提升系统的稳定性和可维护性。

2025-07-29 21:08:46 1445

原创 Qwen3-Coder:下一代开源代码生成模型的突破

它标志着AI在软件工程领域的成熟,为构建更智能、高效的开发生态奠定了基础。凭借其革命性的架构设计和卓越的性能表现,迅速成为开源代码生成领域的标杆。本文将深入解析这一模型的技术亮点、实际应用效果及开发者使用指南,帮助您更好地理解和利用这一强大的工具。,远超同类开源模型(如 Mistral-small-2507 的 53.6%),仅次于闭源模型 Claude-Sonnet-4(70.4%)。在人工智能与软件开发深度融合的今天,代码生成工具正成为开发者的核心生产力助手。,但通过动态激活机制,每次推理仅调用。

2025-07-24 08:59:09 1007

原创 从零开始:用Python库轻松搭建智能AI代理

这些Python库为AI代理搭建提供了强大的底层能力,让测试工程师把更多时间花在创新与优化上,而不是重复造轮子。建议你从LangChain入手,边学边用,亲手做几个小项目,比如自动查询天气并推荐穿衣。实践中你会发现,AI代理就像乐高积木,拼出无限可能!动手试试:用LangChain做个“小助手”,能自动查天气并给出穿衣建议。你会学会AI如何记住历史对话、调用外部API,迈出智能自动化的第一步!

2025-07-21 21:51:03 1033 1

原创 用 LangGraph + Qwen 打造属于你的聊天机器人(新手友好版)

State就是你机器人的“记事本”,每次对话消息会自动追加到里面。到这里,你已经搭好了一个具备多轮记忆的中文聊天机器人。加入长期记忆,让机器人“记性更好”集成工具调用(比如查天气、查百科)尝试多角色协作,做个“多人格”机器人做聊天机器人,最重要的是理解“状态”和“流程”的设计思路。LangGraph 把复杂流程拆成小块,极大降低了开发和维护难度。希望这份教程能帮你快速上手。如果有问题,欢迎留言交流!祝你早日打造出属于自己的智能助手 🚀。

2025-07-17 23:31:15 1119

原创 ChatTongyi × LangChain:开启多模态AI应用创新之门

(基于通义千问大模型)与LangChain框架的深度集成,为开发者打造了一套高效、灵活、全面的AI开发工具链。无论是文本对话、复杂任务自动化,还是图像理解,这一组合都为多场景智能应用的落地提供了坚实的基础。ChatTongyi与LangChain的结合,已成为智能应用开发领域的“黄金搭档”。对开发者而言,无论是打造智能助手、行业垂直工具,还是探索多模态创新应用,这一组合都能极大降低开发门槛、缩短创新周期,实现AI能力的快速落地和规模化应用。阿里云通义实验室推出的。

2025-07-15 23:44:54 339

原创 深入理解 LangChain:AI 应用开发的全新范式

AI 应用开发从未像今天这样门槛低、效率高。LangChain 作为连接 LLM 能力与真实业务的“中间件”,正帮助越来越多的开发者把脑海中的 AI 想法变为现实。如果你也想搭建属于自己的智能应用,不妨就从 LangChain 开始吧!

2025-07-13 22:40:35 855

原创 如何用 LangChain 自定义 Chat Model —— 测试工程师实践指南

LangChain 把“聊天模型”抽象为一种消息输入、消息输出的接口。消息类型说明系统消息,通常作为对话的第一条,用来设定AI行为用户输入消息AIMessageAI 的回复,既可以是文本,也可以是函数调用的请求工具/函数调用结果与 FunctionMessage 类似,随 OpenAI 新标准发展…Chunk对应消息的“流式”输出切片,用于分步输出流式消息Chunk:用于支持“边生成边输出”,比如大模型流式回复时每次只返回一部分token。Mock/测试场景。

2025-07-11 00:07:18 955

原创 LLM接口调用缓存实战指南——测试工程师的效率加速器

选择方案:根据开发场景选择内存或数据库缓存代码集成:通过LangChain的快速启用验证效果:通过测试用例验证缓存命中率和性能提升。

2025-07-10 23:31:11 530

原创 为什么测试工程师要关注多模态RAG? ——对比普通RAG,深度解析RAG-Anything的先进性与落地价值

普通RAG只能看段落,多模态RAG能看全景。自动化测试只有兼顾文本、图片、表格、公式全局,才能真正‘知其然、知其所以然’。打通文档所有模态,极大降低了复杂文档测试的门槛,帮助测试工程师把自动化测试做得更深、更广、更精准,为企业质量保障和创新测试场景提供坚实基础。

2025-07-07 21:40:43 934

原创 测试工程师视角:如何理解与高效应用 `trim_messages` 消息裁剪

灵活支持 token/消息/部分截断/自定义计数保证历史格式安全,易于集成和自动化测试搭配 LangSmith 可视化和多用户隔离,极大提升测试效率把消息裁剪测试作为多轮对话测试的必测环节。优先覆盖不同窗口、不同历史长度、特殊边界(如只剩 SystemMessage)等场景,提升产品鲁棒性和用户体验。

2025-07-03 22:31:12 869

原创 通俗解析:如何在 LangChain/LangGraph 中管理消息历史

除了消息历史,你还可以在状态中加入其它参数,比如当前对话语言。每次对话可以指定 language(如 “Chinese”, “English”, “Spanish”)消息历史会自动添加,语言会自动覆盖LangGraph自动管理消息历史,极大简化了多轮对话和多用户的开发、测试和维护。thread_id 隔离机制天然适合并发场景。灵活的状态管理为复杂对话和个性化配置打下了基础。测试工程师可以用 get_state、update_state 等接口,轻松覆盖各种历史与边界场景。一句话总结。

2025-07-03 20:46:42 878

原创 通俗易懂的LangGraph图定义解析

的组合,构建出复杂的工作流逻辑。下面我们通过一个简单的例子,逐步讲解 LangGraph 中的图(Graph)是如何定义的。通过节点和边的灵活组合,让开发者能够轻松构建复杂的工作流。无论是简单的线性流程,还是带条件分支、循环的复杂逻辑,,你可以将这三个步骤定义为节点,并通过边连接它们,同时用状态对象传递上下文(比如用户的消息、查询结果等)。是 LangGraph 的核心类,用于定义和管理基于状态的图结构。定义一个图的核心步骤包括:创建状态、添加节点、设置边,并最终编译图。节点是执行具体任务的函数。

2025-07-02 23:58:44 1038

原创 LangChain & LangGraph 核心方法实用讲解:测试工程师必备技能

掌握 LangChain & LangGraph 这些核心方法,测试工程师不仅能构建强大的智能问答和知识检索助手,还能把 AI 能力嵌入到测试流程的每个环节,让你的团队在自动化、智能化道路上快人一步!建议:从小规模开始:用 10 个测试用例或 5 个缺陷描述搭建原型,验证效果。持续迭代优化:根据实际需求调整文档切分策略、向量化模型和对话流程。结合团队规范:将与团队的测试标准、安全要求深度绑定。最终目标。

2025-06-27 08:43:33 824

原创 构建RAG应用实战进阶(二):让对话型检索更聪明!——代码详解与原理通俗解读

多轮记忆靠消息序列封装,每条消息都是历史的“存档”检索工具可灵活扩展,满足复杂知识库场景LangGraph让流程管理更清晰,易于维护和扩展代码每步都可流式输出,便于调试和追踪每一个对话节点。

2025-06-26 23:53:12 699

原创 玩转Prompt模板与上下文管理:测试工程师进阶LangChain多轮对话机器人

LangChain 让每个测试工程师都能拥有自己的“超级测试助手”——既懂你的业务,又会高效对话,还能输出专业级别的答案。只要用好 Prompt 模板和上下文管理,你的测试机器人将成为团队的“智慧左膀右臂”!下期预告:如何结合 LangChain、RAG 技术让机器人基于测试用例库/缺陷库实现“知识检索+对话”一体化?持续关注,测试智能化之路越走越宽!

2025-06-25 01:50:04 975

原创 测试工程师实战:用 LangChain+deepseek构建多轮对话测试辅助聊天机器人

LangChain 的价值:自动记录上下文,支持多轮追问,能持续输出结构化、专业的测试知识,极大提升测试工程师的工作效率和答题表现。应用场景:面试模拟、用例设计、测试知识普及、自动化测试建议生成等。工程师建议善用多轮对话能力,深入挖掘测试场景;灵活切换 thread_id,区分不同会话与需求;结合自己的经验,优化 Prompt,让机器人更懂“测试”。结语。

2025-06-22 23:33:28 1035

原创 测试工程师如何利用通用千问大模型精准获取需求文档图片内容

通用千问OCR大模型为测试工程师带来了强大的图片内容结构化提取能力,助力自动化需求追踪、文档归档、票据处理等关键流程。通过合理的Prompt设计与流程集成,可以极大提升测试效率和数据质量,是现代测试工程师不可或缺的智能利器。建议在实际项目中持续优化Prompt和图片采集流程,结合业务实际反复验证,不断提升模型应用价值。

2025-06-20 23:59:50 1024

原创 构建智能问答系统:从零开始实现 RAG 应用

通过 LangChain 的 RAG 框架,你可以高效构建一个结合外部知识的智能问答系统。从数据加载、向量存储到检索生成,LangChain 提供了完整的工具链,大幅降低了开发复杂度。无论你是企业开发者、研究人员,还是 AI 爱好者,RAG 都能帮助你释放 LLM 的潜力。:尝试将 RAG 应用于你的实际项目!例如,为你的团队搭建一个基于内部文档的智能助手,或者为网站添加实时客服问答功能。,检索增强生成)是一种结合信息检索与文本生成的技术,旨在提升大型语言模型(LLM)在特定领域或私有数据上的表现。

2025-06-18 23:58:46 744

原创 AI测试开发工程师如何用大模型调用工具:从入门到实践

工具调用是指:Chat大模型接收到指令后,自动生成调用工具所需的参数,由外部工具执行具体操作(如计算、数据验证、接口调用等),而不是模型自己直接操作或返回结果。要点概括模型负责“决定怎么做”,工具负责“具体去做”;可以应用在测试数据生成、结果校验、自动化测试等场景;模型输出的是参数,由测试工程师或测试系统来执行工具,并处理结果。不同的业务和测试需求下,工具的定义可以有不同的方式。工具调用技术为测试工程师带来了全新的智能化生产力工具。

2025-06-17 23:35:10 631

原创 通俗易懂讲解 LangChain 的 Messages 模块

极大简化开发:统一消息格式,让你无需为不同模型单独适配,开发效率翻倍。高效支撑复杂场景:天然支持多轮对话、工具调用、流式输出,满足企业级 AI 应用需求。维护轻松:结构化消息类型,调试、日志追踪一目了然。无限扩展:支持自定义消息,快速适配多变业务场景。LangChain 的 Messages 模块,像搭积木一样,让开发 AI 应用变得高效、灵活又可控!无论你在做客服机器人、智能助手还是行业分析,Messages 模块都能助你一臂之力。

2025-06-16 23:45:25 998

原创 LangChain 消息机制全解析:测试工程师的实用指南

LangChain 的消息机制为测试工程师提供了强大的工具,帮助我们更高效地验证 AI 应用的行为。在传统的软件测试中,我们通常关注输入与输出的匹配性(例如:输入 A,期望输出 B)。然而,在基于 AI 的系统中,对话往往涉及多轮交互,输入输出的结构更加复杂。本文将结合实际测试场景,深入浅出地讲解 LangChain 的消息机制,并提供可直接复用的测试案例。如果 AI 与前端集成,可以使用 Selenium 或 Playwright 模拟用户输入,验证前端与后端消息的交互。功能,批量测试不同输入场景。

2025-06-15 22:51:53 586

原创 LCEL:LangChain 表达式语言详解与测试工程师的实践指南

LCEL 通过声明式语法和优化的执行机制,为 AI 应用的开发与测试提供了强大的支持。简化复杂逻辑的测试流程,通过链式组合快速构建测试用例;提升测试效率,利用并行化和异步处理加速执行;增强可靠性,通过流式处理和重试机制保障测试稳定性。通过本文的示例和实践指南,测试工程师可以快速上手 LCEL,并将其融入到日常的测试工作中。随着 AI 应用的复杂度不断提升,掌握 LCEL 将成为测试工程师不可或缺的技能之一。

2025-06-14 21:24:41 750

原创 RAG实战:基于LangChain的《肖申克的救赎》知识问答系统构建指南

通过本次实战,我们成功构建了一个基于《肖申克的救赎》文档的智能问答系统。作为测试工程师,掌握RAG技术不仅能提升测试效率,更能推动测试智能化转型。将该方案应用于实际测试文档对比不同分片策略的检索效果集成到现有的测试自动化框架中。

2025-06-12 23:57:29 1123

原创 RAG技术全解析:从概念到实践,构建高效语义检索系统——嵌入模型与向量数据库搭建指南

RAG技术通过引入外部知识库和高效检索机制,显著提升了大模型的输出质量与适用性。嵌入模型与向量数据库的选型与搭建是RAG系统的核心环节。通过本文的指南,开发者可以快速构建从数据预处理到生成的全流程系统,并在问答、推荐、智能客服等场景中实现落地。其核心思想是通过外部知识库动态增强大语言模型(LLM)的生成能力,解决传统模型知识过时、幻觉(Hallucination)等问题。通过以上步骤与实践,技术团队可高效实现RAG系统的开发与优化,为各类知识驱动型应用奠定坚实基础。

2025-06-11 23:31:33 1417

原创 RAG系统向量数据库选型与Prompt Engineering鲁棒性测试实践

RAG与Prompt Engineering是推动AI应用落地的两大支柱,分别考验工程师对底层架构与系统安全的把控。测试工程师应深入理解向量数据库的能力边界,系统性设计Prompt测试用例,为AI系统的稳定、安全运行保驾护航!你们的测试不仅是最后一道防线,更是AI产品可持续创新的基石。欢迎留言交流你在RAG与Prompt Engineering测试实践中的心得与难题!

2025-06-10 22:32:37 963

基于 MCP 协议的接口测试:发送请求与响应断言,测试工程师看过来 配套资源

MCP 服务器的功能实现 在 api_test_mcp_server.py 文件中,核心功能划分为两个工具模块:请求工具 和 断言工具。

2025-04-23

MCP实践第一步-磕磕碰碰搭环境配套资源

MCP实践第一步--磕磕碰碰搭环境配套资源

2025-04-21

测试工程师+用例生成+django

1.支持新增、删除、编辑、查询功能的功能测试用例生成; 2.django编写,部署简单,只需安装依赖库,使用python manage.py runserver即可运行

2025-04-16

deepseek用例生成+测试工程师智能助手

1.通过提取docx需求文档有效标题的正文内容、表格及图片OCR结果,结合动态生成的提示词进行功能测试用例生成; 2.通过提取excel、yml或json格式的接口文档,结合提示词生成接口测试用例; 3.用例以json形式预览,支持导出为md、excel、json等格式; 4.安装部署简单,只需python环境即可,安装依赖库后即可运行; 5.需替换脚本里的api-key,模型调用阿里云百炼deepseek-r1的接口;

2025-04-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除