userCF--基于用户的协同过滤
原理简述:某个和我兴趣爱好相似的网友喜欢的,会被推荐到我这里
兴趣爱好相似怎么找?
1.点赞收藏转发的笔记重合
2.关注的作者重合
做法:
兴趣为:0.7*1+0.7*3 = 2.8
用户相似度计算
相似:喜欢的物品有无重合
相似度介于0,1之间
Q:同等对待热门冷门物品-----------不对,热门物品无法反应独特兴趣,eg:哈利波特(热门)深度学习(略冷门)
改变一下:
nl:喜欢物品l的用户数量,反应热门程度
热门物品,nl大,1/log(1+nl)小,影响小
每个用户是一个稀疏向量,向量每个元素对应一个物品,sim就是向量夹角余弦
两个索引:
线上召回: