推荐系统-FM模型

参考:推荐系统(三)Factorization Machines(FM)_svmmf-CSDN博客

一句话概括下FM:隐式向量特征交叉----类似embedding的思想

LR

如果利用LR做特征的二阶交叉,有:

y = w_0x_0+\sum w_ix_i+\sum\sum w_{ij}x_ix_j

但这个公式存在显著缺点:

  1. 时间段复杂度是O(N^2)。

  2. 依赖于xixj特征对的共现,如果这个特征对在训练集中没有出现,那么wij这个参数学习不到。

SVM

支持向量机的核心:低维空间下无法找到一个超平面来划分两类样本,那么可以经过一个映射,把低维空间映射成高维空间来找到一个超平面划分样本

原始公式为:

y=w^T\phi (x)+b

如果要实现特征交叉,利用核函数

k=<\phi(x_i) ,\phi(x_j)>=\phi(x_i)^T \phi(x_j)

1.线性核函数 k = <xi , xj>+1

y = w_0 + \sum w_ix_i

2. 多项式核函数

k = (<x_i,x_j>+1)^2

y = w_0 + \sqrt 2 \sum w_ix_i + \sum w_ii^2x_ii + \sqrt 2 \sum\sum w_ij^2x_ix_j

还是同LR一样有显著的缺点:
交叉项的参数是独立的,这会使得如果这个交叉特征值没有在样本里出现,这个参数是无法学到的。

总结一下,主要存在两个难点:

  • 交叉特征 xixj 的参数独立,如果交叉特征值没有出现,那么参数无法学习。

  • 时间复杂度过高,如果直接做二阶交叉,时间复杂度为O(N^2)。

FM

基本原理

FM则解决了上面两个问题,公式为:

y = w_0x_0+\sum w_ix_i+\sum\sum <v_i ,v_j>x_ix_j

将wij分解成了<vi ,vj>,通过学习每一个特征对应的隐向量(embedding向量),不再依赖于交叉特征xixj的共现信息,因为即使没有共现,对应的<vi ,vj>依然能够得到训练。

推导过程

时间复杂度由O(n^2)降到O(KN)

思想来源-MF

矩阵分解MF(matrix factorization),在推荐系统里,每个用户对每个物品的评分,可以构建出一个user-item矩阵,而矩阵分解的核心思想是用一个用户embedding矩阵和一个物品embedding矩阵的乘积来近似这个大矩阵,这两个embedding矩阵是可训练学习的。

FFM

\hat{y}(\mathbf{x}) = w_{0} + \sum_{i=1}^{n} w_{i} x_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_{i,j} \cdot v_{j,i} \rangle x_{i} x_{j}

FFM相比较FM,仅在二阶交叉部分引入了field信息(实际上就是个side information)。从时间复杂度上来看,FM的时间复杂度可以简化至O ( k n ) ,而FFM时间复杂度O(kn^2 ),这也是FFM在工业界用的比较少的原因。因此,虽然FFM添加了field information后,相比较FM刻画的更加精细,由此也带来时间复杂度上升和过拟合问题,至于过拟合问题,论文中给出了两种解决办法:1. 添加正则项,2. 早停。

注:

  1. 数据集越稀疏,FFM越有优势,也就是FFM在高维稀疏的数据集上表现比较好。

  2. 如果一个数据集只有连续值,则不适用于FFM。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值