【论文阅读笔记】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

ShuffleNet是一种针对移动设备设计的高效卷积神经网络,通过Pointwise Group Convolutions和Channel Shuffle操作提升计算效率。Pointwise Group Convolutions解决了小网络中逐点卷积计算量大的问题,而Channel Shuffle则促进了不同组间特征的流通,避免信息瓶颈。实验结果显示ShuffleNet在保持性能的同时,大大减少了计算资源的消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一) 论文地址:

《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》

(二)核心思想:

作者在研究时发现,像Xception和ResNeXt这些使用group convolution的网络,在缩小结构时会变得非常低效,究其原因是稠密的1×1卷积造成的;

为了提高计算效率并克服1×1group卷积带来的边缘效应,作者提出了一个高效网络ShuffleNet,两个核心就是:

  1. 一个新的卷积方式:Pointwise Group Convolutions
  2. 一个新的骚操作:Channel Shuffle

(三)Pointwise Group Convolutions:

在小网络中,逐点卷积计算消耗比较大;为解决该问题,一个直接的解决方案是使用通道稀疏连接,例如在1×1卷积上也使用组卷积;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值