《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》
(一) 论文地址:
《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》
(二)核心思想:
作者在研究时发现,像Xception和ResNeXt这些使用group convolution的网络,在缩小结构时会变得非常低效,究其原因是稠密的1×1卷积造成的;
为了提高计算效率并克服1×1group卷积带来的边缘效应,作者提出了一个高效网络ShuffleNet,两个核心就是:
- 一个新的卷积方式:Pointwise Group Convolutions
- 一个新的骚操作:Channel Shuffle
(三)Pointwise Group Convolutions:
在小网络中,逐点卷积计算消耗比较大;为解决该问题,一个直接的解决方案是使用通道稀疏连接,例如在1×1卷积上也使用组卷积;