【2021 计算机视觉】CV算法岗面试问题及其答案总结(一)

本文详细介绍了计算机视觉面试中常见的深度学习算法问题,包括BN、LN、IN与GN的对比,熵、交叉熵、KL散度、JS散度等概念,以及过拟合解决方案、模型优化技巧。此外,还讨论了目标检测中的IOU、NMS及其改进,以及知识蒸馏、模型剪枝和DQN强化学习等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【2021 计算机视觉】面试问题及其答案总结(一)

在这里插入图片描述

BN、LN、IN与GN对比:

深度学习中数据的维度一般是【N, H, W, C】格式,其中 N 是batch size,H、W是特征图的高和宽,C是特征图的通道数。如下图所示,是 BN、LN、IN 与 GN 作用方式的对比图:
在这里插入图片描述

  • 批归一化BN:对批次方向(N)做归一化
  • 层归一化LN:在通道方向(C)上做归一化,主要对RNN作用明显
  • 实例归一化IN:在一个图像像素内做归一化,主要用于风格化迁移
  • 组归一化GN:在通道方向上分组,然后再每个组内做归一化

BN 和 LN 使用场景:

BN 在每个 mini-batch 比较大,数据分布比较接近的场景比较适用。在进行训练之前,要做好充分的shuffle,否则效果会差很多。

由于BN需要在运行过程中统计每个mini-batch的一阶统计量和二阶统计量,因此不适用于动态的网络结构和RNN网络,这时候就可以用LN了。

熵、交叉熵、KL散度、JS散

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值