轻量化网络之知识蒸馏

随着大模型体积增大,工程实践中算力有限,文章探讨了网络轻量化的重要性。知识蒸馏作为一种方法,利用大模型进行离线部署,通过微调学生网络权重以减小Totalloss并提高推理速度,如图1和图2所示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络轻量化的重要性大势所趋:大模型体积越来越大,但实际工程中算力并没有增加,就需要提炼大模型中最有用部分,提高效率同时,增加推理速度。

轻量化方向:

知识蒸馏实现轻量化的优势:使用大模型后,可实现离线部署(无需联网,有时调用大模型API需联网,当网络延迟时,推理很不稳定)

知识蒸馏总体实现框架:图1、图2;

                                                                图1  

                                                                图2

实质是通过微调(训练)student网络权重,使Total loss 最小。温度T用来平滑预测分数,减少数据间的相对值,但保持总体预测分布曲线和T=1(不使用平滑时)曲线一致。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值