
Tensorboard
王摇摆
办法总比困难多
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
tensorboard的功能
在浏览器发出请求时,分析训练时记录的数据,绘制训练过程中的图像。(4)Graphs:展示模型的数据流图,以及训练在各个设备上消耗的内存和时间。(1)Scalars:展示训练过程中的准确率、损失值、权重/偏置的变化情况。(5)Distributions:展示训练过程中记录的数据的分部图。(6)Histograms:展示训练过程中记录的数据的柱状图。(7)Embeddings:展示词向量后的投影分部。(2)Images:展示训练过程中记录的图像。(3)Audio:展示训练过程中记录的音频。原创 2023-06-07 15:15:47 · 219 阅读 · 0 评论 -
如何理解tensorboard?
可视化模型图形(Graph Visualization):TensorBoard 可以展示 TensorFlow 模型的计算图,以图形方式显示模型的结构和数据流。这对于理解模型的各个组件、层次和操作之间的关系非常有帮助。通过使用 TensorBoard,您可以更好地理解和监控模型的性能、训练过程中的变化以及模型结构。通过直方图摘要,您可以观察模型中的参数和张量随时间的变化,帮助您了解模型的收敛情况、梯度分布等。通过使用 TensorBoard,您可以更好地理解和监控模型的训练过程,识别问题和改进模型。原创 2023-06-07 10:51:01 · 179 阅读 · 0 评论 -
Tensorboard初识1
TensorBoard 是 TensorFlow 提供的一个强大的可视化工具,用于帮助机器学习工程师和研究人员分析和监控他们的模型训练过程。它提供了一组丰富的可视化功能,使用户能够直观地了解模型的性能、训练进度和数据流动。除了这些核心功能外,TensorBoard 还支持添加自定义的可视化面板,以满足特定需求。总体而言,TensorBoard 是一个强大而直观的工具,可以帮助用户更好地理解和调试他们的 TensorFlow 模型。用户只需在训练过程中使用 TensorFlow 的特定函数(如。原创 2023-06-07 10:15:30 · 99 阅读 · 0 评论