我们的算法总结

本文介绍了数据预处理的方法,包括数据无量纲化、缺失值处理、分类型与连续型特征处理等,并详细讲解了特征选择的不同策略,如过滤法、嵌入法和包装法等。

1.数据预处理

2、 数据预处理 Preprocessing & Impute

2.1 数据无量纲化

  • preprocessing.MinMaxScaler (数据归一化)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler() #实例化
scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x)
result = scaler.transform(data) #通过接口导出结果
result
  • preprocessing.StandardScaler (数据标准化)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差
x_std = scaler.transform(data) #通过接口导出结果

2.2 缺失值

  • impute.SimpleImputer
    2.3 处理分类型特征:编码与哑变量
  • preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值
  • preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
  • preprocessing.OneHotEncoder:独热编码,创建哑变量

2.4 处理连续型特征:二值化与分段

  • sklearn.preprocessing.Binarizer
  • preprocessing.KBinsDiscretizer

3 特征选择 feature_selection

3.1 Filter过滤法
3.1.1 方差过滤

  • VarianceThreshold

3.1.2 相关性过滤

  • 卡方过滤
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#假设在这里我一直我需要300个特征
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
chivalue, pvalues_chi = chi2(X_fsvar,y)

  • F检验
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvar,y)
  • 互信息法
from sklearn.feature_selection import mutual_info_classif as MIC
result = MIC(X_fsvar,y)
k = result.shape[0] - sum(result <= 0)

3.2 Embedded嵌入法

  • feature_selection.SelectFromModel

3.3 Wrapper包装法

  • feature_selection.RFE

2.朴素贝叶斯

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值