阿里拥塞控制算法HPCC: High Precision Congestion Control论文

要解决的主要问题

在运行大规模 RoCEv2 网络多年之后,RDMA 网络面临着调和低延迟、高带宽利用率和高稳定性的根本挑战。这是因为高速意味着流以线速开始并积极抢占可用网络容量,这很容易在大规模网络中造成严重拥塞。此外,高吞吐量通常会导致深度数据包排队,这会破坏对延迟敏感的流的性能以及网络处理意外拥塞的能力。目前现有的DCQCN 和 TIMELY方案,都存在一些问题。

DCQCN 和 TIMELY的问题

1.收敛很慢:对于粗粒度的反馈信号,例如 ECN 或 RTT,当前的拥塞控制方案无法准确知道增加或减少发送速率的多少。因此,他们使用启发式方法来猜测速率更新并尝试迭代收敛到稳定的速率分布。这种迭代方法在处理大规模拥塞事件时速度很慢。

2.无法避免数据包排队: DCQCN发送者利用一位ECN标记来判断拥塞风险,TIMELY发送者利用RTT的增加来检测拥塞。因此,发送方仅在队列建立后才开始降低流量。这些构建的队列会显着增加网络延迟。

3.参数很多且很复杂:当前拥塞控制算法用于调整发送速率的启发式方法有许多参数可以针对特定网络环境进行调整。例如,DCQCN 有 15 个可以设置。因此,运营商在日常 RDMA 网络运营中通常面临复杂且耗时的参数调整阶段,这大大增加了错误设置导致不稳定或性能不佳的风险。

产生这些问题的根本原因是在传统网络中缺乏细粒度的网络负载信息--ECN是终端主机可以从交换机得到的唯一反馈,而RTT是一个没有交换机参与的纯端到端测量。然而,这种情况最近发生了变化。随着网络内遥测(INT)功能在新的交换ASIC中的应用,获得细粒度的网络负载信息并利用它来改进CC已经在生产网络中成为可能。

RDMA 网络拥塞控制的基本目标

除了超低延迟和高带宽,网络稳定性和操作复杂性在 RDMA 网络中也很重要,因为 RDMA 网络面临比 TCP/IP 网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值