Adobe Firefly 3.0 AI 图像生成器来了

Adobe 发布其 Midjourney 和 Dall-E 3 竞争对手Firefly 2.0已经半年了。几天前,他们发布了Firefly 3.0(目前处于测试阶段),这是他们最新的文本到图像人工智能工具,其中包含一些非常酷的更新。在我们深入了解细节之前,先简单介绍一下 Firefly 是什么。

什么是Firefly?

Firefly 是一个生成式 AI 模型系列,任何人(即使您不是专家)都可以在几秒钟内生成高质量的图像、令人惊叹的文本 效果和设计模板,只需简单的文本描述即可。

最好的部分? Firefly 将内置到您常用的一些 Adob​e 应用程序中,例如 Photoshop、Express 和 Lightroom。那有多棒?

Firefly3.0有什么新功能?

Firefly 3.0的主要新功能如下:

  • 自动风格化:新型风格引擎可提供具有多种风格、颜色、背景和主题姿势的高质量输出,使用户能够更有效地探索创意。
  • 结构和风格参考:用户可以生成与参考图像的结构和风格相匹配的图像,从而提供更高级别的控制和最先进的视觉质量。
  • 改进的图像质量: Firefly 3 提供更好的照明、定位以及人物渲染、复杂结构和人群的多样性。
  • 增强的提示准确性和细节:模型更好地理解复杂的提示,从而生成准确且细节丰富的图像,包括清晰的文本显示。
  • 扩展的插图和图标样式:插图输出的显着改进可以快速创建图标、徽标、光栅图像和线条艺术。

好吧,这些在纸面上看起来都不错,但它们真的有作用吗?让我们来看看吧。

<think>嗯,用户现在问的是哪种神经网络可以在图片上加减东西并且保持背景一致。之前他们问过神经网络在图片编辑的应用,所以我需要针对性地回答这个问题。首先,我得回想一下之前提到的模型,比如GAN、Diffusion模型,还有像ControlNet这样的框架。 用户的需求可能是在图像编辑中进行元素的添加或删除,比如移除不需要的物体或者添加新物体,同时让修改后的区域与背景自然融合。这可能涉及到图像修复(inpainting)和生成(generation)的技术。需要保持一致性,所以模型需要理解图像的上下文,确保新增或删除的部分在光照、纹理、阴影等方面与原图一致。 首先,GAN相关的模型可能有Pix2Pix,CycleGAN,但这些可能更多是风格转换或图像图像的转换。而图像修复方面,像Context Encoders,或者基于GAN的inpainting方法,比如DeepFillv2。不过现在更先进的可能是基于Diffusion的模型,比如Stable Diffusion的inpainting功能,或者DALL-E 2的编辑能力。 然后,用户提到的“加减东西”需要精确的区域控制,这里ControlNet可能很有用,因为它允许通过额外的条件(如边缘图、深度图)来引导生成过程,确保添加的内容符合背景的结构。还有像SEGAN或者MaskGAN,这些可能用于特定区域的编辑。 另外,用户可能需要知道具体的模型名称和应用场景。例如,Adobe的内容感知填充可能基于某些神经网络,但具体模型可能不公开。而开源的解决方案如Stable Diffusion加上ControlNet插件,或者使用RunwayML这样的工具,可能更适合普通用户。 还要考虑到用户的技术背景,如果他们只是想知道有哪些技术,可能需要简要介绍每个模型的特点,比如GAN vs Diffusion,以及它们的优缺点。比如Diffusion模型生成质量高,但计算资源需求大;GAN训练不稳定但速度快。 此外,保持背景一致可能涉及到多任务学习,比如同时处理修复和生成,或者使用注意力机制来聚焦于相关区域。例如,Co-Modulation GAN中的自适应归一化技术,或者SPADE(空间自适应归一化)在生成过程中保持语义一致性。 可能还需要提到一些具体的技术,比如图像修复中的partial convolution,只在有效像素区域进行卷积,避免边缘伪影。或者使用transformer-based模型,更好地捕捉长距离依赖关系,确保全局一致性。 最后,总结这些模型,指出最适合用户需求的可能是Stable Diffusion的inpainting结合ControlNet,或者使用DeepFillv2这样的专门修复模型,同时提到工具如Photoshop的神经滤镜或开源工具,方便用户根据自身情况选择。</think>在图像编辑中实现**「精准添加/删除元素」并保持与背景一致性**,主要依赖于具备**上下文感知与局部-全局协调能力**的神经网络架构。以下是针对该需求的核心技术与模型: --- ### **1. 图像修复(Inpainting)类模型** **功能**:智能填补被遮挡或删除区域 **关键技术**: - **Partial Convolution**(部分卷积):仅处理有效像素区域,避免无效区域干扰(如NVIDIA的Image Inpainting模型) - **Attention机制**:通过自注意力层捕捉长距离依赖,确保修复区域与全局风格统一(如**DeepFill v2**) - **GAN+Diffusion融合**:结合对抗训练与扩散过程提升细节真实度(如Stable Diffusion的Inpainting功能) **典型应用**: - 移除照片中的路人/水印 - 修复破损的老照片 --- ### **2. 可控生成模型** **功能**:在指定位置生成新对象并融合背景 **代表技术**: - **ControlNet** - 通过引入**空间条件控制图**(如边缘/深度/语义图),精确约束生成区域 - 示例:添加建筑时自动匹配透视与光照 - **GLIGEN** - 使用** grounding tokens** 实现基于文本提示的定位生成 - 示例:在指定坐标生成"戴帽子的狗"并保持阴影真实 --- ### **3. 混合编辑框架** **功能**:联合处理添加/删除/修改操作 **技术组合**: 1. **分割网络**(如Mask R-CNN)定位编辑区域 2. **生成网络**(如Stable Diffusion)合成新内容 3. **融合网络**进行边缘混合与颜色校正 **典型流程**: ``` 输入图像 → 用户指定编辑区域 → 语义理解 → 内容生成 → 多尺度混合输出 ``` --- ### **4. 最新突破性模型** - **DragGAN** - 通过拖拽关键点直接操纵图像内容(如改变动物姿态) - 依赖**生成器的潜在空间流形特性**实现非破坏性编辑 - **InstructPix2Pix** - 通过自然语言指令指导编辑(如"在草地上添加一棵树") - 使用**GPT-3生成编辑指令配对数据**训练跨模态模型 --- ### **效果对比维度** | 模型类型 | 添加精度 | 背景一致性 | 计算成本 | 典型工具 | |----------------|----------|------------|----------|-------------------------| | 传统克隆工具 | 低 | 依赖人工 | 低 | Photoshop克隆图章 | | GAN-based | 中 | 中等 | 中 | DeepFillv2 | | Diffusion-based| 高 | 高 | 高 | Stable Diffusion+ControlNet | | 混合编辑系统 | 极高 | 极高 | 极高 | Adobe Firefly | -- ### **实践建议** 1. **简单对象移除**:优先使用**Stable Diffusion Inpainting**(开源免费) 2. **复杂场景编辑**:采用**ControlNet+SDXL**组合,通过Canny边缘检测保持结构一致性 3. **商业级需求**:使用**Adobe Firefly**或**RunwayML**,内置物理引擎模拟光照反射 当前技术仍面临**多物体交互阴影生成**和**微观纹理匹配**的挑战,但通过**LoRA微调**或**Dreambooth个性化训练**可显著提升特定场景的编辑质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是乌鸦的空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值