Git码农学堂
CV算法工程师,现就职于某大厂,热爱AI,热爱C++/Python。运营2个公众号:Git码农学堂/计算机知识。文章和资源,均是自己制作!有问题私信。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【ultralytics-seg: 03】实例分割模型python预测
本文介绍了如何使用训练好的YOLO模型进行预测。首先在PyCharm中打开项目并配置环境,然后编写预测代码,加载预训练模型文件(best.pt)。代码示例展示了如何对多张测试图片进行批量推理,并处理返回的检测结果,包括边界框、分割掩码、关键点等输出。最后可将预测结果可视化显示或保存到磁盘。整个过程实现了从模型加载到结果输出的完整预测流程。原创 2025-08-07 14:48:05 · 18 阅读 · 0 评论 -
【ultralytics-seg: 02】实例分割数据格式转换coco2yolo
本文介绍了如何将COCO格式的JSON标注文件转换为YOLO格式。首先下载并配置JSON2YOLO项目环境,修改训练配置文件coco8-seg.yaml中的路径和类别名称。然后通过Python脚本处理COCO标注文件,将多边形分割坐标归一化后写入YOLO格式的txt文件。脚本会遍历COCO标注中的每个对象,提取类别索引和归一化坐标,最终生成与图像同名的标注文件。该方法简化了COCO复杂JSON结构,实现了高效格式转换,为YOLO模型训练提供了标准化的标注数据。原创 2025-08-07 14:45:53 · 15 阅读 · 0 评论 -
【ultralytics-seg: 01】使用yolo训练实例分割模型
本文介绍了如何使用Ultralytics YOLOv8进行目标检测和实例分割任务。首先详细说明了环境配置步骤,包括从GitHub下载项目、创建conda环境并安装依赖库。然后演示了目标检测模型的训练过程,使用YOLOv8n模型在coco8数据集上进行3个epoch的训练,并展示了训练日志和指标。接着文章介绍了如何修改代码实现实例分割功能,包括加载yolov8n-seg模型并使用coco8-seg数据集进行20个epoch的训练。最后,文章简要提及了如何训练自定义数据,包括数据标注、格式转换和修改训练配置文件原创 2025-08-07 14:43:41 · 10 阅读 · 0 评论 -
【CPU部署+全过程-01】PaddleOCR识别图像中的表格
本文介绍了在Windows平台使用VS2019和PaddleOCR进行环境构建的完整流程。主要内容包括:1)安装基础环境(VS2019、CMake);2)配置PaddlePaddle C++预测库和OpenCV;3)下载PaddleOCR源码并构建VS项目;4)解决编译过程中的常见问题(如头文件缺失);5)准备OCR模型文件并执行表格识别任务。项目最终生成了ppocr.exe可执行文件,通过命令行参数调用检测、识别和表格结构分析模型,实现对图像中表格内容的自动识别。原创 2025-07-23 13:14:22 · 86 阅读 · 0 评论 -
【YOLOv11-目标检测】05-模型预测(手把手教程)
本文介绍了如何使用纯Python代码实现YOLO模型的预测功能。通过加载预训练模型,对输入图像进行目标检测,并可视化检测结果。代码展示了如何获取检测框的坐标、类别名称和置信度等关键信息,最终通过OpenCV显示带有检测框的图像。该流程完整呈现了从模型加载到结果可视化的预测全过程。原创 2025-07-15 13:56:53 · 185 阅读 · 0 评论 -
【YOLOv11-目标检测】06-模型部署(C++)
本文介绍了使用C++部署YOLO模型的具体步骤:1. 克隆YOLOs-CPP项目并配置环境(ONNXRuntime和OpenCV);2. 修改build.sh脚本指定OpenCV路径和VS工具链;3. 构建项目并编译生成可执行文件;4. 删除冗余文件并修改CMakeLists.txt以简化项目;5. 最后将所需的dll文件(opencv_world4100.dll和onnxruntime.dll)拷贝至运行目录。整个过程详细说明了从环境配置到最终部署的完整流程,适用于Windows平台下的YOLO模型C++原创 2025-07-15 16:42:59 · 818 阅读 · 0 评论 -
【YOLOv11-目标检测】03-数据格式转换(手把手教程)
前面两篇文章,我们分别学习了yolo原理和环境搭建,本篇文章,我们来学习如何将自己用labelme标注的json文件转换为yolo所需格式。原创 2025-07-10 10:56:34 · 846 阅读 · 0 评论 -
【YOLOv11-目标检测】01-原理(深入浅出)
摘要:YOLOv11是Ultralytics推出的先进目标检测模型系列,包含从轻量级(YOLO11n)到高性能(YOLO11x)的多个版本。该文介绍了目标检测的基本概念,详细讲解了YOLOv11的安装、预训练模型使用、自定义训练、模型验证与导出等核心功能,并列举了智能零售、工业质检等典型应用场景。文章还提供了提高小物体检测、加速推理等实用技巧,最后指出YOLOv11因其高性能和易用性成为研究和工业应用的理想选择。(149字)原创 2025-07-08 09:52:54 · 530 阅读 · 0 评论 -
【YOLOv11-目标检测】02-环境(手把手教程)
我们了解了目标检测的一些原理。本节课程,我们就开始在ubuntu上进行环境安装。原创 2025-07-09 13:06:41 · 396 阅读 · 0 评论 -
【YOLOv11-目标检测】04-模型训练(手把手教程)
本文介绍了YOLOv11目标检测模型的训练流程。主要内容包括:1)数据准备,需将数据集拆分为训练集和验证集;2)配置yaml文件,修改数据集路径和类别名称;3)调整训练参数,如模型类型、图像尺寸等;4)启动训练并查看结果。文章详细说明了从数据组织到模型训练的全过程,特别强调了配置文件修改要点和参数调整建议,最后展示了训练完成后的性能指标。原创 2025-07-10 14:28:29 · 200 阅读 · 0 评论 -
【UltralyticsYolo11图像分类完整项目-04】代码重构
本文介绍了如何通过重构代码将功能模块化到头文件中,以简化代码并提高可维护性。具体步骤包括创建头文件 yolo_utils.h 和实现文件 yolo_utils.cpp。头文件中定义了多个类,如 Logger(日志功能)、LabelLoader(标签加载器)、ImagePathLoader(图像路径获取器)、YoloOnnxInference(ONNX 推理器)和 ImageProcessor(图像处理器),每个类都有明确的职责。实现文件中则提供了这些类的具体实现。原创 2025-05-09 14:47:51 · 195 阅读 · 0 评论 -
【UltralyticsYolo11图像分类完整项目-03】Onnx版Cpu预测C++实现
本文介绍了如何在仅使用CPU的电脑上,使用C++部署图像分类模型。首先,通过Visual Studio新建一个控制台应用程序,并配置OpenCV和ONNX Runtime环境。接着,详细说明了如何在项目中设置包含目录、库目录以及附加依赖项。然后,编写了C++代码,包括加载标签、初始化ONNX Runtime、创建会话、验证模型文件等步骤,并提供了日志记录功能以便调试。最终,实现了在CPU上预测单张图像的分类结果。原创 2025-05-08 17:05:37 · 492 阅读 · 0 评论 -
【UltralyticsYolo11图像分类完整项目-02】onnx模型转engine格式+TensorRT版Gpu预测C++实现
我们实现了模型的训练和导出为onnx,那么如何在有显卡的电脑上用C++代码实现预测呢?本文来带你实现!原创 2025-05-08 16:16:23 · 1183 阅读 · 0 评论 -
【UltralyticsYolo11图像分类完整项目-01】模型训练与导出onnnx模型
ultralytics模型训练和导出onnx格式原创 2025-04-23 12:20:42 · 543 阅读 · 0 评论 -
【YOLOs-CPP-图像分类部署】05-OpenVino加速
本文详细介绍了如何通过OpenVINO工具包加速YOLOv11模型的推理过程。主要内容包括:1) OpenVINO的安装与环境配置;2) ONNX模型转换为OpenVINO IR格式;3) 代码实现中的模型加载、图像预处理和推理分类流程;4) 项目编译与运行所需依赖配置。通过将模型转换为OpenVINO专用格式并进行硬件优化,显著提升了在Intel CPU上的推理速度,同时保持了原有的ONNX模型兼容性。实验结果表明,该方法能够有效提高YOLOv11的分类效率。原创 2025-06-06 15:17:28 · 1073 阅读 · 0 评论 -
【YOLOs-CPP-图像分类部署】04-项目优化(加速部署)
本文详细介绍了将YOLO图像分类C++部署项目从CMake迁移到Visual Studio控制台应用的全过程。针对低配CPU性能瓶颈问题,作者通过替换多线程HPP代码为官方实现,并采用448x448固定输入尺寸优化推理速度。项目配置包含OpenCV和ONNX Runtime环境设置,实现了图像批量处理、分类结果显示及结果日志输出功能。关键步骤包括依赖库配置、DLL部署和代码调试,最终在Windows平台成功实现高效CPU推理。该方案显著提升了低配硬件的兼容性,为图像分类任务提供了稳定的部署解决方案。原创 2025-06-04 13:54:32 · 119 阅读 · 0 评论 -
【YOLOs-CPP-图像分类部署】03-解决报错
在上一篇博客中,我们遇到了一个项目报错的问题,并在GitHub上向作者提问,但两天后仍未得到回复。因此,我们决定自行调试代码。通过修改YOLO11CLASS.hpp和image_inference.cpp源码,成功解决了报错问题。修改后的代码展示了如何在头文件中定义调试宏、引入必要的库、定义分类结果结构体以及实现图像预处理等功能。这些修改确保了代码的稳定性和可调试性,为后续开发奠定了基础。原创 2025-05-23 10:16:47 · 155 阅读 · 0 评论 -
【YOLOs-CPP-图像分类部署】02-跑通项目
本文介绍了使用YOLOv11进行图像分类预测的完整流程。首先需要删除无关的视频和摄像头相关代码文件,并修改CMakeLists.txt文件以适配图像分类任务。然后准备必要的依赖文件(opencv和onnxruntime的dll文件),并将YOLOv11训练好的分类模型和标签文件放入指定目录。接着修改image_inference.cpp代码,使其适用于图像分类任务。最后重新编译项目并运行生成的exe文件,成功实现了图像分类预测功能,虽然存在一些小bug,但整体流程已经跑通,为后续优化奠定了基础。原创 2025-05-21 15:22:22 · 793 阅读 · 0 评论 -
【YOLOs-CPP-图像分类部署】01-构建项目
本文介绍了如何在YOLOs-CPP项目中实现图像分类模型的部署。此前,YOLOs-CPP项目不支持图像分类,因此我们通过另一个项目实现了CPU版本的图像分类。如今,YOLOs-CPP已支持图像分类模型的部署,因此需要编写新的文章来指导实现。文章首先介绍了如何克隆代码仓库,并详细说明了如何修改image_inference.cpp文件以适配YOLO 11版本。通过注释掉不需要的YOLO 12版本代码,并取消注释YOLO 11版本代码,用户可以轻松切换模型版本。文章还提供了模型路径、标签路径和测试图像路径的配置原创 2025-05-20 16:17:36 · 496 阅读 · 0 评论 -
【万字逐行详解】深入解析ONNX Runtime图像分类程序main函数
本文详细解析了一个使用ONNX Runtime进行图像分类的C++程序,涵盖了从模型加载到结果可视化的完整流程。程序首先定义了模型路径、图像目录、标签文件等配置参数,并创建输出目录。接着,程序加载类别标签并获取图像路径,初始化ONNX Runtime环境并配置会话选项。在验证模型文件存在后,程序创建ONNX会话并设置输入输出名称。随后,程序进入批量处理阶段,遍历每张图像进行加载和处理。整个程序展示了现代C++在计算机视觉领域的应用,包括异常处理、性能分析等工程实践。原创 2025-05-13 11:40:24 · 95 阅读 · 0 评论 -
【UltralyticsYolo11图像分类完整项目-05】重构前的代码输出每一个类别的概率+代码详细解析
这篇文章详细解析了使用C++和ONNX Runtime部署YOLOv11图像分类模型的完整流程,包括模型加载、图像预处理、推理执行和结果可视化。重点讲解了如何获取并展示所有类别的预测概率,而不仅仅是最高概率类别。通过代码解析和性能优化建议,帮助开发者理解C++实现与Python的区别,并提供了完整的错误处理和日志记录方案。原创 2025-05-12 09:48:25 · 458 阅读 · 0 评论 -
【git-hub项目:YOLOs-CPP】本地实现05:项目移植
ok,经过前3个博客,我们实现了项目的跑通。但是,通常情况下,我们的项目都是需要在其他电脑上也跑通,才对。原创 2025-02-21 17:27:23 · 468 阅读 · 0 评论 -
【git-hub项目:YOLOs-CPP】本地实现04:项目简化
项目跑通之后,我们常常还需要对我们没有用到的任何内容进行删除,以简化项目体积,也便于我们阅读和后续部署。如何实现呢?本篇博客教会大家实现!原创 2025-02-18 15:12:49 · 470 阅读 · 0 评论 -
【git-hub项目:YOLOs-CPP】本地实现03:跑自己的实例分割模型
本节博客,我们继续讲解,如何在cpu+windows上,跑通自己的实例分割模型。原创 2025-02-14 16:53:47 · 918 阅读 · 0 评论 -
【git-hub项目:YOLOs-CPP】本地实现02:跑通项目了
构建项目后,我们就可以使用提供的 shell 脚本对图像、视频或实时摄像头画面进行目标检测/或者实例分割。原创 2025-02-14 10:36:22 · 973 阅读 · 0 评论 -
【git-hub项目:YOLOs-CPP】本地实现01:项目构建
前面刚刚实现的系列文章:【Windows/C++/yolo开发部署01】【Windows/C++/yolo开发部署02】【Windows/C++/yolo开发部署03】【Windows/C++/yolo开发部署04】【Windows/C++/yolo开发部署05】必须用nividia显卡的电脑,才能运行最终生成的exe。但是,我想只用cpu实现实例分割,怎么办呢?我们今天来尝试这个项目。原创 2025-02-13 17:32:33 · 885 阅读 · 0 评论 -
《深度解析 trtexec》TensorRT 的强大推理优化工具
trtexec 是 NVIDIA TensorRT 提供的一个命令行工具,用于测试和优化深度学习模型的推理性能。它支持多种模型格式(如 ONNX、Caffe 等),并允许用户在不同的 GPU 上进行推理测试。原创 2025-02-08 10:25:03 · 1475 阅读 · 0 评论 -
【Windows/C++/yolo开发部署05】使用C++ 进行推理
现在,我们来使用c++预测实例分割模型best.engine。原创 2025-02-08 13:50:11 · 920 阅读 · 0 评论 -
【Windows/C++/yolo开发部署04】使用CLI 和 python进行推理
经过前面的几个步骤,我们终于得到了模型文件best.engine。那么,这个模型是否能用呢?我们需要使用CLI 和 python对其进行推理。如果CLI 和 python通过了,我们还需要对其进行c++推理。两个都没有问题的情况下,我们的这个系列文章,才结束。那么,我们首先使用CLI 和 python推理。原创 2025-02-08 11:24:32 · 977 阅读 · 0 评论 -
【Windows/C++/yolo开发部署03】将实例分割模型ONNX导出为 TensorRT 引擎:完整记录
在深度学习模型部署中,将模型从 PyTorch 格式(.pt)转换为 TensorRT 引擎格式是一种常见的需求。TensorRT 引擎具有高性能和低延迟的特点,适用于实时推理场景。前序文章,我们已经实现了将自定义实例分割模型导出为 ONNX 格式。本文将详细记录如何将 best.onnx 导出为 TensorRT 引擎格式,包括踩坑过程和解决方案。原创 2025-02-07 11:42:58 · 1138 阅读 · 0 评论 -
【Windows/C++/yolo开发部署02:错误方法】将自定义实例分割模型导出为 ONNX 格式
在深度学习模型部署中,将模型从 PyTorch 格式(.pt)转换为 ONNX 格式是一种常见的需求。ONNX 格式具有良好的跨平台性和兼容性,可以在多种推理框架中使用。原创 2025-02-07 10:07:41 · 1042 阅读 · 0 评论 -
【Windows/C++/yolo开发部署02:正确方法】将自定义实例分割模型导出为 ONNX 格式
在深度学习中,模型的转换是常见的需求,尤其是从 PyTorch 的 .pt 格式转换为 ONNX 格式,以便在不同的平台或框架中部署。本文将详细介绍如何将 Ultralytics 训练好的 YOLO 模型从 .pt 格式转换为 ONNX 格式。原创 2025-02-07 09:32:36 · 925 阅读 · 0 评论 -
【Windows/C++/yolo开发部署01】TensorRT-YOLO快速编译
我已经用yolo训练好了yolo-seg模型,但是c++运行总出问题,部署失败,找到一个相关项目。如何跑通呢?记录如下。如果对你有帮助,请点赞关注收藏,谢谢!原创 2025-02-06 17:04:22 · 983 阅读 · 0 评论 -
【Windows 开发NVIDIA相关组件】CUDA、cuDNN、TensorRT
【Windows 开发NVIDIA相关组件】如何安装呢?原创 2025-02-06 14:36:04 · 1258 阅读 · 0 评论 -
在 Windows 上安装 Zlib 的步骤【完整步骤】
Zlib 是 cuDNN 所需的数据压缩软件库。如何安装呢?本文我们来一步步教会大家!原创 2025-02-06 13:41:46 · 1958 阅读 · 0 评论 -
使用Paddledetection进行模型训练【Part4:C++Windows推理】
本节课,我们学习目标是:Paddledetection实例分割模型C++Windows推理。注意,Paddledetection自带的deoloy目录以前是可以用来部署的,但是现在官方已经不更新了,因此,我们使用fastdeoloy【官方前一段时间主推的】工具。原创 2025-01-19 16:59:10 · 484 阅读 · 0 评论 -
使用Paddledetection进行模型训练【Part3:模型导出+模型预测】
前面两篇文章,我们分别介绍了Paddledetection训练模型的环境配置和模型训练过程:使用Paddledetection进行模型训练【Part1:环境配置】使用Paddledetection进行模型训练【Part2:数据准备+模型训练】本节,我们继续来讲解如何导出模型并进行python预测。原创 2025-01-08 11:42:24 · 524 阅读 · 3 评论 -
使用Paddledetection进行模型训练【Part2:数据准备+模型训练】
在目标检测算法产业落地过程中,常常会出现需要额外训练以满足实际使用的要求,项目迭代过程中也会出先需要修改类别的情况。本文档详细介绍如何使用PaddleDetection进行目标检测算法二次开发,流程包括:数据准备、模型优化思路和修改类别开发流程。原创 2025-01-07 09:21:29 · 626 阅读 · 0 评论 -
使用Paddledetection进行模型训练【Part1:环境配置】
方便大家进行模型训练前的环境配置。原创 2025-01-06 14:00:01 · 995 阅读 · 0 评论 -
Segment Anything论文详细翻译【Part2:引言Introduction】
为啥要写这篇文章?因为找不到一篇写的特别好的【翻译并仔细解释】文章。网上大多千篇一律,写的不够详细。因此,博主打算自己从头到尾,仔细的过一遍。希望帮助大家!原创 2025-01-03 16:09:27 · 847 阅读 · 0 评论