引入–问题
(1)一维有限差分
推导:
对于函数
T
(
t
)
,
T
(
t
)
T\left(t\right),T\left(t\right)
T(t),T(t)连续。
使用
T
(
t
)
+
∆
t
T(t)+∆t
T(t)+∆t的泰勒展开式来逼近
T
(
t
)
T\left(t\right)
T(t):
移项得:
在将∆t移项到左边:
因为差分方程是将连续变为离散,而题干中只需要对
d
T
(
t
)
d
t
\frac{dT\left(t\right)}{dt}
dtdT(t)做近似,因此考虑只保留等式右边得第一项,将等式右边得其余项视为截断误差:
如果截断误差为0,则有:
这个公式称为欧拉前向公式已知题干条件:
d T ( t ) d t = − T ( t ) \frac{dT\left(t\right)}{dt}=-T\left(t\right) dtdT(t)=−T(t)
将其带入差分方程:
整理得到:
已知初始条件:
T(0)=1
假设将t的整个区间分成n份,步长为∆t需要自行设定,理论上∆t的值越小近似效果越好,则分别对应
t
1
=
0
,
t
2
=
∆
t
,
…
,
t
n
=
n
−
1
∆
t
,
t
n
+
1
=
n
∆
t
t_1=0,t_2=∆t,…,t_n=n-1∆t,t_{n+1}=n∆t
t1=0,t2=∆t,…,tn=n−1∆t,tn+1=n∆t。当
t
=
t
1
t=t_1
t=t1时:
即:
此时根据初始条件T(0)=1,计算出 T ( t 2 ) T\left(t_2\right) T(t2)时刻的近似值 T t 2 T_{t_2} Tt2然后以此类推,根据 T t 2 T_{t_2} Tt2求出 T t 3 T_{t_3} Tt3,…,直到求出 T n + 1 T_{n+1} Tn+1。这样就使用有限差分方法将连续的 T ( t ) T\left(t\right) T(t)近似成了离散的 T ( t 1 ) , T t 2 , … , T n + 1 T\left(t_1\right),T_{t_2},…, T_{n+1} T(t1),Tt2,…,Tn+1。
(2)二维有限差分
从题干中可以发现:t是时间变量,x,y是空间变量,不仅需要对t差分做近似,还需要对x,y差分做近似。,将x分为m份,y分为u份,t分为n份,则在x方向上
x
i
(
i
=
1
,
2
,
…
,
m
+
1
)
x_i\left(i=1,2,\ldots,m+1\right)
xi(i=1,2,…,m+1),在y方向上有
y
j
(
j
=
1
,
2
,
…
,
u
+
1
)
y_j\left(j=1,2,\ldots,u+1\right)
yj(j=1,2,…,u+1),在t方向上有
t
k
(
k
=
1
,
2
,
…
,
n
+
1
)
t_k\left(k=1,2,\ldots,n+1\right)
tk(k=1,2,…,n+1),因此为了方便表达将
T
(
x
,
y
,
t
)
T\left(x,y,t\right)
T(x,y,t)离散后的值记作
T
i
,
j
k
T_{i,j}^k
Ti,jk。∆x,∆y,∆t为x,y,t方向的步长,
x
i
=
i
∆
x
,
y
j
=
j
∆
y
,
t
k
=
k
∆
t
x_i=i∆x,y_j=j∆y,t_k=k∆t
xi=i∆x,yj=j∆y,tk=k∆t。
使用有限差分近似
∂
2
T
∂
x
2
\frac{\partial^2T}{\partial x^2}
∂x2∂2T: