在线 Reactome 富集分析

Reactome富集分析是一种基于Reactome通路数据库的生物信息学方法,用于研究基因或蛋白质集合在生物学通路中的功能富集情况。Reactome是一个高质量、人工注释的通路数据库,涵盖广泛的生物学过程,包括代谢、信号传导、免疫反应等。其核心目标是帮助研究者从系统层面理解基因的功能关联和调控网络。

分析目的:

解析基因/蛋白质的生物学功能:通过富集分析,确定目标基因集(如差异表达基因、蛋白质组数据)显著参与的Reactome通路,从而推断其生物学作用;

揭示疾病或表型的潜在机制:从高通量数据(如RNA-seq、ChIP-seq、质谱数据)中挖掘与疾病相关的关键通路;

支持多组学数据整合:结合GO富集、KEGG分析和蛋白质互作网络(PPI),构建更全面的“基因-通路-表型”关联模型;

指导实验验证:通过富集结果筛选关键通路,设计后续功能实验(如通路抑制剂处理、基因敲除/过表达)。

如果对于代码不是很理解、不想自己写代码又或是没有代码运行条件,可以尝试使用【掌上生信绘图平台(https://handybioplot.cn)】,只需要上传文件即可一键分析并自动绘制对应的图片。

柱状图

气泡图

结果表

绘图参数

结果图片均提供了绘图参数,可以自由修改图片样式

任务列表

如果分析结果不满意,还可以修改参数重新提交分析,所有任务独立记录,可自由切换查看结果。

### 如何使用R语言进行Reactome通路分析 为了利用R语言执行Reactome通路分析,可以采用`reactome.db`包以及`clusterProfiler`库来简化这一过程。这些工具能够帮助研究人员快速获取并解析来自Reactome数据库的息。 #### 安装必要的软件包 首先需要安装几个关键性的R包: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("reactome.db", "clusterProfiler")) ``` #### 加载所需库 接着加载上述已安装好的库以便后续调用其功能函数: ```r library(clusterProfiler) library(org.Hs.eg.db) # 如果是人类基因,则需此映射文件;其他物种替换相应org.*.eg.db即可 library(ReactomePA) # 提供更多关于Reactome的功能支持 ``` #### 准备输入数据 准备一份包含感兴趣基因列表的数据框或向量作为输入源。这里假设有一个名为`gene_list`的对象存储着一系列Entrez ID形式表示的人类基因标识符[^1]。 #### 执行富集分析 通过`enrichPathway()`命令来进行针对特定基因集合的Reactome路径富集测试,并指定参数以优化输出结果的质量: ```r ego <- enrichPathway(gene = gene_list, organism = 'hsapiens', pvalueCutoff = 0.05, # 设置p-value阈值筛选显著性通路 qvalueCutoff = 0.2, # FDR校正后的q-value阈值 minGSSize = 5, # 至少含有多少个目标基因才考虑该通路 maxGSSize = 500) print(ego) dotplot(ego) + ggtitle('Reactome Pathways Enrichment Analysis') cnetplot(ego, categorySize="nGene") # 可视化展示网络关系图 ``` 以上代码片段展示了如何运用R语言中的相关资源开展一次完整的Reactome通路富集分析工作流,从环境搭建直至最终的结果呈现[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值