1.请求数据 得到的密文,网页上显示的是明文
2.分析可知,密文经过了js的解密,需要调试找到解密的代码
调试得到 e 是密文数据 t 方法为将密文变成明文的方法
继续调试分析 发现使用了 RSA加密与AES加密两种方法
3.总结其整个流程为
1.后端发回加密数据
{
“encrypted”: “DktfRB2Usz/qRBewDNkLU346urs7i1z8sIoM7IbrOLj7a2u9WOG2ALjjZc1WBYQzlEdm6IKX…”,
“requestData”: “WC9v50Ghzuui5hZGUR71h5X5vySrBEJCCaO33smL4…”
}
(1)requestData 里面为需要的内容,想要得到明文内容需要进行AES解密,
(2)AES解密所需要的密钥为 encrypted里面的内容,但是也为密文
(3)encrypted里面的密文 需要用的RSA 方法进行解密
(4)RSA需要的密钥 可以在js文件中找到 已给出
4.python代码
class RsaDecryptData:
def __init__(self):
self.m= 'MIICeAIBADANBgkqhkiG9w0BAQEFAASCAmIwggJeAgEAAoGBALzkv8+Ccy40gcjiWmWtkFBGJVK/RTjuTmuSRZ7QV0tJK4zZFtjdihKQXujtC++hwph/sOaIad5Lc6ptnb7yPhFjQAvU8X4ZEEzo/RL4FLTLJA3V4GCfpsYwmxPK1EKKOExT8ywc7hTT+M98VUB4ieGK3SRahXeO7YK6yf8nFuqvAgMBAAECgYEArtQFV9lEI8LDUJt30V3oEPQrfT+8oOmnuVZji48HDI5HeZA/3i6FqZLn1Sv4/Sy5gA3HPEeLvQwWnOnhs6ZfnHxRwlXpxvb6b0dhb2mNpQ7iGs6RuhlqXfIIpRurUzHBjLlVIm8PkApRmjfWeKoocAcF3GUEl1WLGW3CKNizPzkCQQD3oO+Jy+nqWwqGphwgjamfUM3DqVrEC6NWysehXE7GyDpC6Iih/W20xWW6isNbxd0NHFQjct/LFuO4mzEFKjXLAkEAw0d/5cm1YsLsjsuBJFf+5ERIo9ogvdQoOu+7GGL10ppab2ctXrsF6etLxNF/LGs+Zv85QAL4sPvYe7ZmzcOiLQJBAOJvb5r5s/RxO7bUvnOmFq1wHjgE7NLIMZxz4QhUeFSdU2lLaWV3cJIUz2k86ldJH1GVzfp8WNhFHgb5ImIurvECQDvGfir7xI83tau8NYrHeNms4UNuuMkC0VHBIldDq5XM89PYFHZD73p8MRRNQI17Qn3KsF6cyj16yfiMjAl+Uf0CQQDtIPuNxGLKQ1c1HFDiuVUrkG0N3LSTxI66m+rCCFsZBC3d6loR1IB03WRhFExcbEuWuU98wg07RXzy03SyOWgz'
self.private_key = '-----BEGIN PRIVATE KEY-----\n' + self.m + '\n-----END PRIVATE KEY-----' # m 为js中给出 根据私钥形式进行构造
def decrypt(self, text_encrypted_base64: str, private_key: bytes):
# 字符串指定编码(转为bytes)
text_encrypted_base64 = text_encrypted_base64.encode('utf-8')
# base64解码
text_encrypted = base64.b64decode(text_encrypted_base64)
# 构建私钥对象
cipher_private = PKCS1_v1_5.new(RSA.importKey(private_key))
# 解密(bytes)
text_decrypted = cipher_private.decrypt(text_encrypted, Random.new().read)
# 解码为字符串
text_decrypted = text_decrypted.decode()
return text_decrypted
class AesDecryptData:
def __init__(self, key):
# 初始化密钥
self.key = key
# 初始化数据块大小
self.length = AES.block_size
# 初始化AES,ECB模式的实例
self.aes = AES.new(self.key.encode("utf-8"), AES.MODE_ECB)
# 截断函数,去除填充的字符
self.unpad = lambda data: data[0:-ord(data[-1])]
def fill_method(self, aes_str):
'''pkcs7补全'''
pad_pkcs7 = pad(aes_str.encode('utf-8'), AES.block_size, style='pkcs7')
return pad_pkcs7
def encrypt(self, encrData):
# 加密函数,使用pkcs7补全
res = self.aes.encrypt(self.fill_method(encrData))
# 转换为base64
msg = str(base64.b64encode(res), encoding="utf-8")
return msg
def decrypt(self, decrData):
# base64解码
res = base64.decodebytes(decrData.encode("utf-8"))
# 解密函数
msg = self.aes.decrypt(res).decode("utf-8")
return self.unpad(msg)
def decrpt(res_data):
#RSA解密得到 AES解密需要的密钥
rsa_=RsaDecryptData()
private_key=rsa_.private_key
aes_key=rsa_.decrypt(res_data["encrypted"],private_key.encode())
#AES解密
aes_=AesDecryptData(aes_key)
msg=aes_.decrypt(res_data['requestData'])
print(msg) #结果正确
if __name__ == '__main__':
#结果数据测试
res_data={
"encrypted": "DktfRB2Usz/qRBewDNkLU346urs7i1z8sIoM7IbrOLj7a2u9WOG2ALjjZc1WBYQzlEdm6IKX2BszRNw3dXQ35Xs3FSK1qt0WQQvmerAdkq453GARaaR9a6DCdUtCY+r089vpaQsQ/S7KnvQRctVQJBba4CBrtcjW+vfpsw+tBPg=",
"requestData": "wWC9v50Ghzuui5hZGUR71h5X5vySrBEJCCaO33smL49h9JIjhffngmQqygbe8vvbtN3GBXnNly12nulhA3Qf7mack5jHXTIbaShNVs4zpIG+XEJRqqcFsgl6fZqq0960Vi9lG1/wtwqznohswobz5zLyNz28L6aHKJB/rTpBAt0oE7iAg9pwi4XgZk8SzipMeJC2ln87O+oMSzmzVeRfzyDzi7xc5ai0jLyOTHzSYu6hQO7Y7fSutMVUjNn4TsAgFg8KugJIzB+O92X3nVxPM2EEJntrY6i3EYDs5w9A02AgcWbCnW9wK9zBZtL5jJQbfTa8UWxXOYlshFBvlCT0vj9xaxfFEeMadonlh7udUlb+ln/BMW5MApkpGeWMaQKJNn3ytnb9BKuPNk+uLnYekaxo9qZLb3cXdttshzR7yU4D1jrDEaF7U0ZO6gnAFSeUM7crTMQMt0loRu7pb7XvcHbbJSxVJREmo3qMbkq1TGshLGgqqHRW+oP7mz0cTnjVlegExY5K1aqw1M37yalxCemwPzImHAeUyxrg1qIJeGqJsregxyheqYc4P9VYIy1xL6wkUqHTsy/cU3W/oIo6G3RV7FOiBzt37t8394XlWE8ftdjPqOVd64V9ZOPrh5XqjIpeys1nxwgMdEWKEl93+rZUDiqSmYU5xPd+xrQxkzWrxCrt4busuh9nQy+a6NvaxogsQ3EXSAl0noHEoz5+SIk50F5IaLKslFhWSKvEAz65rjciOwsu8f5hdRd1Ncl+DQyt+6ebPqAunmCKhFTns+rXdvhlG5Bqvw309edK+Qoa0me1gtqu5tOkOx1CybWae9Dof5/yMiJDflM5YtIT9O5IXYwGB/ScF+niTPgur/vSNWL8bH5WymTOo5VMyXiufMJ5yXxnhS/9M3LHj1FUuhqdi0q0hBsDhrhKd3OIOnycF1Lxo4qfqxuOUN3JvtU9U3l8cajiGbB1yLxuoDZ+mnnkQ2xV2tuyT0XLGFJ50qIhCOHqmIxBP8tYg5ulf37JJ0dFLYTwF/qBcrBBJTk0+HqwHM3a0LheR1AcNgnqyMO+pTGSM5DT8rHbWG8htvDd4etns4ZmqKXmrIYMQJajewwoAM5fgBeuAvKmx0PlyiUKikHTMjkstNVfFkbBkn8mQ4o5rxChfEMqfNH2rJzKv1rXVXqVRlO/B0/yZERWYMiu9wVZbpXhNY7JLZ7R+GZT2bGONJDtjKRfSeFBCPmU/lrE3WFnH0nd9H3Rrg61OwVeEEvHFzI9sVVDxUpd60PeNN1uToRCphithABtGsUPJPOPND6jmmWPw84Q7T240ZhgRImDWYZyb6LRAWX8j/kPB4kc4MeLypLbvih6dc4OpRt0IKMX2r4aeyzBTYGJejxaJN/Lk0YcuJc9Sdi7wIEQoTGKlSM6Ec5TQ4GAAQtgNdx+9dBKfIY3xysz1QNuXqC62JW7XwY/cXilLs9jrI5VnsDUXwtNeSabfOvkaJtwSr2GY6yPwt4inlmsA8abTVgEO9eUk5XURXHyprVqRigKlnUhAA8ZwIzBP3B7uSGnTZRquWwLVp9W9btXmRyPQm+KsPR7ZEQKRsylfvzqeB7rl8V5acDluFZNIvAusT0QEIR7TyVolPc4Fm2s0TALVB5jHsRBwuIao8tNzFhTLA/gy1r13tkXV/0VZnCfFwnPQZnQo+dYFehIb0HM1nLDOIM4d6SJVFtcI/Uz6DlkaEkfXP8PCCCs2+hWFVtOdJhKnYhjnfWGyHGUqjEh6cBltYTTvLDIdsNiUqk9Qzsr0/IUtdpdpmq//n1cYlc9vtoLCoR5tcHA3nyCpJqpdZwxWE23gWrtHeiVGnwx5QPlpZF/v9FoMq48yporpC/m9ujx9IU2LEBWSHdX+9tLQqDjPfZDAfu/O/fdbLO0tf4ytJO+NGdYDB3V/nJfkyXWNOk3Ajf7aav1gGLOCGdBGVTQUjRMi5Cn2LYYnH4os5cjyD96qGI/RBiprB1557ETtdnXTNJcbO4qqtZY5+fjCGJudQO4rZ52KOa2FRfu0uWti6UFmoz7DhIREjKLl5uok8cu8OSFATApW7KdnIzr34HBH13xtsxRgycwlLWDI4XVC18rYk1EloyJ2aH8n/712B2p7QMdIkoHfPvlFRJUozmuAaD4ZSiggFcMWfvwFd+Ua5sf9O7BemuujIt+txSJXpFQQQdWiujkrKmkOkiO2el3WYcRaym/Uf0Ln7kPKTe+840zI8LBaT8rJdpSuJQgL7FGpxahWa8U2KPPPpMpp27bTvubnvkovdZF6bh+315PNWY/kQxXuBV0jbut+ZC2Q0BirMHjG4BL15eQG05QoIbJxVxJMiCVitNtXHG7SpyzfZl7N4ilk+apN1u9kGbPqkUqpLFpDni+auIRUbq5cKccocQyPmC49skj0v55bZTeV5uRpZyM7w1JhyPIHYJDG8xnVSW7/Upj0ba7HXDEi3M8b2Erv/g4UrgtpL1/uDLvUQupDdHgd4gpA9fI75B1IoL3XU5RvlDJO3AoFDGV6H3GIkWO4ZpvCvdlcKq0rNrcXUsA+H22rsXirVrR7yZzrJa3MbMfJhGTnhpcLn88Pbe2NB4jRssq8sbpyJT4icvfI30iZXpfusaWnjchBi5ODOG8FJtorLsvr7E9/7d4nnIBNYJKoD4D80c9kVYxKC2BKJBhWr3JIREvxrGLEld8z+uqSZBBnz4gFEw9tvcj0JGR3NfGFIcaEN9ZNtztQ4yIDk8rNACSAdXzV9dOdRWAwaVDS+MfPTEFl4cXD583ihoMOXRIuYjB3l+gj/9X8IBqg/s4wqCx+mvpDBR2af4N4zFrUTBCEOewzN83hqH8FFRyF0hNMGe5/mFOdWyN9FDD0LU5ErXefEgT2P78/7tv5tFhMcyRSTO2md1blNerqJ85qz/LxEI0ZCUK9wdCHFJp62K9k/uIx4q99NiYOLJaMLoHkalzeaAlOAAStHiufq5f+LMfj+j7/I+9WJBGBEdu8iUGOBbrABNU1TT+5wKo5cJfQY9wiJD3jFVU1dwTA2rsCD7uFXXDPjRhOMqp4SbkA+YGuGWhs34zT1FDhuB4DzQLixYp78nYggBfsNs00/ptgOyyW98ub++PLDHQTLQTFltOPmcqvJ194eJ+WEprfVMnraJ0UkmpXBTdrqEpAb1Wowvu71GB1kjpwAXGF9qop5QPyvARiz/E0ZB20Fqlfaz5vTAcThExJs67nx8j5Fc6Av3D2DpPIuZ1QWYeAdpDMfaNXGWl7/hmKF5r3/hCmqFISsfU/SxY/NHoM6ODNllG3ZoVDJG91CwX0fD9i32L/aj3e88XebWj4CX6QQDQ4rZ0geGYiP2wKLkYFWJKIHq0TAMMBx+AUlmG99dhOwH+6gJVpiJIe/7gw1zdi/101BxXXR1D9bkJ8MO3+VlBMnQtNg8AiM3FRvBVor3o6nzAnlWjqmdmPgJOygxAhfqsKedlkemwPzImHAeUyxrg1qIJeGqJsregxyheqYc4P9VYIy1x4mOEpGo9w2XHYshZ2ygnl/MCTuk8o8aqfDDrdHQwl7Lwfr9cVzQWXQwCGxIou7Kx7iK5rScIe6Q1YmYsOshYbBM0GCh/KqMMzkbovI5lRgbYnrApdwf/VXyzVTvigBxYY8eSkBNBbcy5d6ePFKsSxynpqe0PuFk5MqBEOQrluFugCZ6XCSDI2W7VNry9uCqxvZ/oflAgd+qPo2NpmbAspuOIkTuzCut6qrmjk9fFInnX/5QAbOv/+iOyUQ321blM7khdjAYH9JwX6eJM+C6v+9I1YvxsflbKZM6jlUzJeK58wnnJfGeFL/0zcsePUVS6Gp2LSrSEGwOGuEp3c4g6fJwXUvGjip+rG45Q3cm+1T1TeXxxqOIZsHXIvG6gNn6aVFv1g92VrtL/bro40m0SuiEI4eqYjEE/y1iDm6V/fsknR0UthPAX+oFysEElOTT4erAczdrQuF5HUBw2CerIw76lMZIzkNPysdtYbyG28N3h62ezhmaopeashgxAlqN7DCgAzl+AF64C8qbHQ+XKJQqKQdMyOSy01V8WRsGSfybCISY5bJVyogGTsqb8n6JTgYiGTDLnpgKC0L03kfzqTgoZkJuDZjlBIwCxUpNdAzT721JqlSWID3+IgjdisEccMObYIQlEJ7ekYg9YIwkuIDxD1VXApijsknDvuWs3Cr2MXPFTcn/4F/FrLZk1Enqu/RTJY0Shoti6dNtEwFwTb9xneqeGvGZ4hV0efrjciR0WNuPnJN/sbNRz3+sa22uKxqjIzMGLvUp/TBvgPoLb2n5ZpZL7C0rOVIExdY7DtjYuhoyYwNfAcs36i9EARmjnCib9/aBNR7eeUuL9qUH23P3qlRyW6FCs3AERqUjOVFZrKCrkgTLA5WjbNuJxB1NnR2flzd/lwG1ca5hrbniraLAYmcVl5ncMoHvKijePruHxp46AxsSLiCAJtXeV0e+vlTJO09lQDzXEIEVCmlTD23nfYzPN9XoqlDXX1F2wvmwbdXktZlrkwofm51FsCqV6MS2ogsXFF3vYi4FD+yZ+V3DRFBS8x38jElhJ7/SYZkO7BTsgvFDMxEkvMFAZMe0JDw/CTPnJMHi1dM1nrp1lUrg5nARVY/7IyRhaNOWCcTT7sBo0J6q/uLjWorWsbC+9589wZamj726TOblRUodI69XelB/KKV2IHHhYgOIIrzvi5lJxX4Zg9xerk9gJ2VYoF9/CKZ/fk+6qjvbVwx7FlEBMUziD26fURp5XTJPF8eI30qoAs2PpuzKClTUPy3C246SMZcyVvv8FBrkevtK3QRJUmsvfT4d+J05Qfkuz7mRc+CnaAM5lNh1k15xd4hURENQOlgPtHAY2QbApOJNcvI6UTBdqgthCLYvDGodGTxRec4q6vpZAfZTf5uTHJrIF/X0wX+R6IwTyMCZqayk40NkIpcEjCyIoKmQQerdvedk5xF+4CmpLvlJqhHd5l1wLu2rK7PIgi6tss9IX6V3DHAJoxE3jBgZBynJc/Q0NivD3wURJ4x7/jg9UzH6yBJWlPCUxNWve9c7i5PKGALbEjeIv8zxyL9ruRvmurY6yga6+TJrgjpF75WFU5eJOJtBgHZYVTfGd15xsBnrDjV+k6wdv7Al2clp6+CMJYm5xdGcZiNXbbBRCMf07cSoWO8i2ht3LcE/vnqSiVlMDu8IeD8K0zVf7DWpkCAwiC2gGLLTWrXcbqwMK5Snh2bdu1zF5IphhIHT/zkAXZ6n/3ao0smOlKuUgwIPqh6K8jRjNLJ/YxmIanDi6gRCOK590f25plOlSFdCT4pEzXvjXnsYfhZrmSbgw3QCqguITRXbLF/uUgxhEZkSRFOKBQsfIGNbwx6xMQ9Cqr4qwe8ItVTPMUMu/S8Y2HHiDOIDYkr3yvYD2qXWQBDVMFTOMbLJ0+V9uJBvBeDQNM2qcHNZ7pfU93NNq6W8OtJ2FGwcAfUHLsmqG4MMFkF5Vzf9H08W0+n6QtBGHNMN1kx3t/iJgPga/8uCUTCib8UfwEp56koDc0F4cXoptmAiBeC74wuiG32uM/sU9ijYPwzrcovCwO3bnAj9OLsyhGnk+cA3ju3IGzMoCaMRN4wYGQcpyXP0NDYrw1KQYXyIlEjAS914NBuhR80B/TdawtaYeJTfkFJruHdzf2U5fF4kH26m5qExIGbfUesiP42u1Qq2+TxlP1hl+H1+fzp4ply137EnBP8XDu/yHVRjSF9imUdWxAgRzs3iYv9ERpDeYCgpYcVUIoFtf5a3G/yUjI0QsYSifSNiBRAGtgmNasOUMVfl9cM9SBViARGDnafG0DkllvlqlO1PmEMM7xCgdSrrY/r0ybP9oWfSP3iU1puvYpnJ3KUQiGoi1PfZQRrMgJfDGGcKcQvcIcJL6vAe9rvox6QCzYLCrTdQLBtabQNRL1SLDF0I/RKEcsQ7/I70Z4HRpgbrDuiJKOpApQX5Tkxh/TtWG86nHV5wDheCr9ruPZQJaWBRojvsm/KfjhJBxqNfAWsbYDvRgOYjBiz3GlNpu4toMW+y3DBjVFF18/YtPgjcpkucQuW3zsUu59/ut+NRRnFUxeIwu9t7r9QqhnjGeCvmhmkOZ7G2kzk5CdnD45CmJnOL7uDU7HMXr8QZx/tsyI5UvQWXEKMcXuhm4UqwuViaQKHEpq4jZIC6cnTZvFT+DUB2jugih1qJKoj/ljv25MMm/fjRxrk9OYitGNE1m0FrMDMS7UFvrRssLxKPfTSO7JoapXkKdu0iWcaIsb7Oc7AEykOWuNwC3ozK+OWXNHIJQx4C/+KWaUnGjkVONGabNmh7yYY5K+ocC71qndJ9P+hN1zxalcw4OlJOqeD8ak6IA7WdEI5eFufxiSQIYWjQ5alhareTMzrcpM2i47F9BmrEPGKMIEw4+Nz+ceP2iR06LkFmtMcdt8zJBa+9YyLIgqgMHFO4ZIfU4fvKGDTMv1kdaKAmR5qqKuy03O/SU7sTCKc6keBGa6RdY8yeKhyc7HB2y4FujppvtsryvTGRVjMlL77IDEqEPV60Fqrj7dry3yk5zfQqdS/nnB4pEVV9ttKB59OpWyoa/JvrDXNMTw+U4pgTDUPs5D6AuPm82qDN5e0yGAnBhNYA4Qz+UMsOAlzQ3P9pIWdREf9hZS4Dvu6EDoKbd05S9uqPuE4pCD/xG4+NdSZl7oISiz+p16G9VgtIXtUj1cyi+eDIDacZHL2PV+zJbZG+53i9xjlNab0M2OygLlB5mMVvRn6669b2gXTfiJLIQK2ZlURqrpg8PCs7cOo8ujaUSRoOiKuy2a7mMzpqpKk4gfL3kF+Qw9rqUlj3IY5eFnxcw6466uS/RbsTiM0LDJ6m5hv1+ZqXftQFmsNeZR19YJtQo0rYv2k0TgRq2oA8RvVD2l3oy/wafPrgteaGVK6eSbvaiIK0RswensRX5onuXy0gA1Rmy/6VMjflP0TaCVj5+TxmoccjhIVPq5C2TpAVWOgCKn34vIzsbvzLDTumkeKWh59n184RU9R0ZJjXNvcsIpwlUbvnorrcN4rznu/lwOikKkYvn2CK3jKR66M1b57HxGOWNos/3yW9WoTlY/0o47oJDO1dprkxTc9WJ4kuBiDX26dOJksutSvh0lnft0w3EdRYmszFZGG45IcL4CjLymz8Ovti2+Zpv8Vi2XmGtfIBkBBUCE0XsYRL0RbBK0oNfpvnWObwvtacTpbO+irD0e2RECkbMpX786nge65fFeWnA5bhWTSLwLrE9EBCEe08laJT3OBZtrNEwC1Qe+crTwN/Vkwq6bJ8mpT3HkJXxvDM+M96Qt6QHxDYrR86yfJPzKk2NiXDCmYFcnIG2K7dGJJQLlFKlxTwp4wuyDHahxFhT0quqQ1xVLALLx0yqORSZDhur6TbM5wetxmNk51E9VwMFV1Nc6UQlS/5FgvDEPaNZJ+3lAKHpa0syBrk9wXx9R2NUSrTTYga9PCUMaeSGgKMiY06o7ZUwhhtXnxP6ru4/AYRv2aDslQUo79DSlLtoIOVKtJAnqbKeRjzP7vvr1wSmMImY0AybHQwqDU3KSl7UkE6b9CaXgFpm5u9FwbCx01C8TLOcoUoLhr1nR7UUyZqq5fgyd/cpECk+CXIOpgdJuQZOsH4nH6zx6klQHStLYTswmCyGpHeoJy5K1i7XCkodj7watUvpE1xO01rHcpx/DIyLigcAycMpHO28b8IgE2qdofSWSR8KAeMEQPfR4AVrDh3vocXhqzePbJORjizcVMuku/QzacVqM1jIAuOhpy1mxPMVQa1zoDctJlYE7oC5vzw8fbXrpEC4K0xbDPNeIB0ezsSwQHRdsetYucUe188/+bNYSZ30tux5+BpxONjQ8jT8FndrHofZbEz0t35tTD5qSdJ3XAz3CmmOBBiQ28+DMljiwUsdnWyWfKhFqTg/zprbLZD18HrobodduGNQS3lS7tBvYX6968bK2krVmftzdhTWRyy7jUrpnNFpDAsgxNKEv2ZTogky2cdWIFCeBp0kdhERE/ovaWm4QDrm1YaF+287ybyOjAJnicXrzyl++WY3v8hwodfO/gvjcpdz+5usy1MQTmglduQa0me1gtqu5tOkOx1CybWaQ3vntakFGJj3snBtq5fSfhTrFsHEA9eG85VKIYEVjynf2U5fF4kH26m5qExIGbfUp+Y74Bb92hBSkiZQh7mrUFKSk1JPHw+NG0F+F0DIIoj/+/UGQZCn/erbqnU1XScJhgft8fj98UtwmIAfNYx/C5VJw0Sdc3ydFVrvcZBfNPQRqIJw/b3dz0YAM2saiKKGEtzkQBcWZJbvir0PjPSCUGgZMYLvZptHPMVK+ewdFZnoe8JKFqwe1dSkMJqIfBQNsJjRbplarH8raJIdCKAcLZzRaQwLIMTShL9mU6IJMtkqcM4VZlTUaDrlu1KMXVwirxXQljf7FIa9JuWivOTz+iFTT44R/XEz5+1W6QcxOCU7g9EjoBqSiz3n1u+rW3WC5gAtN+ss+fZRKWMukRccVh3Q4LkeYj/o8xq755MIrxpb7hLD7eO8Ryd3EJRPf0JDGUXvUsz5Q+Uan1wBr0ejNV+fzp4ply137EnBP8XDu/y6/oFzIc49gi5nggHNumHnX6NIf3j8bem6blBRwBM1QMZh+VwXpYwQmzfACMMNJoN6QReiay/73yRY8lhdgmB+zq0RhpAPhavW1Zj37H3r/TdGlhZLhDGU5GsfbP5jVvsA5c6w6ViJetQIoO2qSIQz6/pNoScuLuZHKYDz++RvK7aDlGhNLQVPrnhUEQmFrf76kAfETYSQpa17w/1YFpvQFcLR3zzkWc/aqWbXjLTvKY+nAOc0MG+3qZppVQnhy3CNaUrhnl1Abq/VdDJ+iTY5wk/amTHk3dpetUAEumYdfmsJSXCOZ9D+DwP9DlDhX32g/TDEn9u/mG0uNLknqtDSpGKWJD6/kxBLqhTEwEFkE/2Z6mHzmnLNSWH3IArtuhu2eksK5X6Pnv2hHue/O+VkEjVEOiKCV/wpXjDdgNGD1GSMkzUkat/bil+4u1HcRgNYhfSFQc9z9XS+xb4AaqZt+epE8SfBO9q8Lsj0JYFs4z5jOOvB4QpMzYvmgV5zylHBVpvHVnQN4SRmjEZ7YBLNQ3a6/9nQxtsqK56qc+PAUJTKFPtHobISUmoFwAzmb9Iqd+kzecycqGa6d1FGvtuvWqx5zkrtrEg3Duiho5EIxe3M1wMU/mrNwvZ26s0XrUvtkRJzK5dvErIcVChPzSAG81rAAMXBAoP81P5phPysb4chrxTu00fTbXb9hwtmrS6Pl4vq+BKA1QAfiqKr7Me8TndD80iR8B0vGoP35n7G/BtMusVzgm/dnK48suXToAFsR8EPd1cjWTEBLPWOawwiYby7WUen+T6ONhYSfNhAinNhR+L1dxMX+WLXDwVWroBYhjwLAMhTYsN3IdyG8Pc+6FraUNysFDf7R8ktgPoh45rpF1jzJ4qHJzscHbLgW6MrxltLNIiFwbhETp04lpMLSz/1XWItGnB+giPXPPeaI1i5ALGwLYmhQzvytAiq4zQ68UeMEDsMDFtWLaAoXOvERtbNtxUEzJbDiS30pajU9biZEGo+PhmNPXlMdemvFld8PvLcSrPWp/a2FhmeY8/EmqfmZ3yu5L44hKi1ihGSsQmnGzaKdd9YYzzGWZ+Fu0JyoVEWrOg4MLMqGxToYGwPKySK81IragaCgu7GmXZfEgVf1m5wyvqXTalOSZZWa0Au7oo1vF7TMY7y93K8YV+gmqf5sJJZAvZHSYvS5FaTqeDyw6tj5+JsHrrLGpg5fxkbCjjY1LwS768i2RemF3+xdZYQYoyXOIKbasQCyrmLDbnX8wNSdHnOyKy0U/kdwCPCOFYnIJeZ8An1yF5ecbvMlboZ3/8V8etVBUNLM0B8xKEDkGw3HkcWSGPYoQZjX33zz8fA9Q2pk3lswRwv0Qh+DT8Wh244KreOV9gz1n/F9qWKw2hcObUjaOYZ1o3wfeJ3PkkRKqwvUCkGloepdKsyX+r8JYHP5pu298Gn9Qf34Hsy1FvWdkQoxrQsX0iHNUIKaNwXzBOM+yhGsHLE5KmHiJ6/lV3ERC3u6NjbkCwpqMMhhLfV7A/yrtpYJIJMvvCXjtFlJuIAECslBZLiT+9j4V52SvpnOMQeMzUHgW6LbSboWetHHhRYr6RH5FmVB8GP+ER3T/i1bo9QGPg/w8h8DJGWZix1TpxB8Y6RrWCVMyQT3LYkTI+xZzLnad4RTrJcjY4zNxRJR+KjZbLVqHHRWmRUapTXYC1m0x9AnvAfGltHOlhG0O7868RUbCDSce356KsfFYATeV/ZuybfUU/p1jiD624vblAmGteA4MLX3oQNO7V66b9vagi6GRV5F7cFGCZgl2hqUI936q+tz49sGPu52Ho6ihoBu/3vFx1kyGlYg/vkmw1jZTZ0S9ODMEpaSjGZW9UQzTRVRU/FEphcdQH8KUE3ACJcK2gcsafau9oxztVMEge3J0Fd9VZT4t6lrSM3KvZoMfPb+cQcNjHbj9CUk3eX0n8wHzD5vnTa3iinNfkm8F2NgXRaQMfDINtO/dK6RLfNhhnPAGi4Jk3Lg7S/RNbzpHAyzAFzB/C+XZDCpaa12v72Kf71MNWvSEsKCvFM/5MohT+eKGZqinLXUUs2dqTLAyaOt/WLWpm6zWUu6Ika1H+da6Jb70YtR4yvULuFmNayxm4+NCaL2m6g/CaMIf4mKnXECQDfnfRKjCHjL55zCIY9CZB8KnRSlxEtukpLnUCyAir1+FcIDF37AmFC7b0So9l5GM3mgZNoW80EVNfRAHuPFFknGzlsMH1aL3R+E9Qow0SGVDY3ZKfdhyru1GhkuqPwJ/2tstr03Ez0t35tTD5qSdJ3XAz3CmmOBBiQ28+DMljiwUsdnWyWfKhFqTg/zprbLZD18HrobodduGNQS3lS7tBvYX6968bK2krVmftzdhTWRyy7jUrpnNFpDAsgxNKEv2ZTogky2cdWIFCeBp0kdhERE/ovaWkjb5ZbmD8H17keN+x9BReYwd4ycJBLuBXcXkxD98DP+BpEEWGVFfSdvpMq04cIrbIt0qGmKK8AkT0Es4NEoHZtAFw2F+4CEFwTf+5mTrc1oxahWa8U2KPPPpMpp27bTvubnvkovdZF6bh+315PNWY/kQxXuBV0jbut+ZC2Q0BirMHjG4BL15eQG05QoIbJxVw1Rx+q7DazHDXToJHpDH8vbftU5OHpw4Ms+EEHiz8xKBeELhAW7ElSQBCBuSDhUFzzsxh2I7B/dKkN29x7FjvTOPcZ1Fn38yUNwcO0NzTp2R0R03J7Y/1T8H2FlGVN9927asrs8iCLq2yz0hfpXcMcu+2PPjByWsIDJTbzmdCOGdMjberNIJWNF9snvHqozAlrge1n0/IHXfv3IyM2SWObbG7xib6m3JQE9JXZytQDQuNd6EfVgyXd/L7oC/E2UhaiDKG3BzsgXMsXPVGI9Fq9vVvStUIg/AtEMUnmWuHX8OH3Oy7fi8sExLrYSdhI0LfQwefDE5ni5+DLMbBLMtg6ZhQpUCewR7KF+qpEO7oPrNd8Wfz/Pce6WshbhL705RcwQhDnsMzfN4ah/BRUchdIPQPOJMlUjQScD9JSKYD9z48C0V/ULyccXeMNxfwogqPMmhbSp3MN382E4t4ZXfAft+AwY6znhyucRBs4dpgsUeSL223bwfbF6NAEP4ickx1mGwGOmpHGdFyauFYdz5DnTGCjo1L+LxOKuCYzflXwHn7yz6xQuk8zG/ujannS/co4Ob9Oif2Huvyf1+hLnLckOwR8T3Qbw31r+Kc948jPqoYn3BamE+94/KkUoAzcgFTu1Nm+pgU10xQ29S6A4h/M7ewcGm0whD2DPrj7fL7Gss2zUjWVGirDgykSM2E8enH6cVxfyag4+qypM6UEeZK8OBbrABNU1TT+5wKo5cJfQY9wiJD3jFVU1dwTA2rsCD7HMelnRW6rV0lUxxPbzEj0uGWhs34zT1FDhuB4DzQLixYp78nYggBfsNs00/ptgOyyW98ub++PLDHQTLQTFltOPmcqvJ194eJ+WEprfVMnraJ0UkmpXBTdrqEpAb1Wowvu71GB1kjpwAXGF9qop5QPc4FxotUYuapC9IZMQoBGI2WFw0awtNUZTeiEkIQ/vnHG/ZpiPIFivEMGvPwpLT7p86xdWHehiOVaOeKb1q4I9+uC2cS728wOwvnnerJtS/dCPFLxDYc19ZAtFDJB0dTZ81fQ2FmxRn4y++NY23GRtBpruMn4MVCGxW14MGbBvhWw+jaD7/kGx1Teekkp0ZVyZYXDRrC01RlN6ISQhD++cQd1Z9443Ivx5idYqL56fA9xlEAPis7dcy52wTB31POpSUyVwt8r2LZDwl+OJg1/4+WqNkLyKJ2fJAg/vKlPiFg9I3shXJHKAlIu5v2vsLuE4clbYoDlcePY+DBZHvL8KjMAPYJ8mlk//VGYc61KE+0U56XdEXmihK4Q4rQiyF+0pFkIoWavZ19ZPFgrmH99rVrc/SelT+54Ox7aDTTqWqivZZNjvKo1Lp/S7ZXTTFzap646YsZQnd8Nw2RFjQExpsWX06ZvxoK5BY6Gd8F/ib25BQ6PQ3LSGr/eFL2flVIF8aZ9p81i6m1JDs9DzytniWowQ/d9LP3yzSwOOWwvoXb3gnCnkYU5vdh+YgVtIsmwmFkKUZ5U4EbWcBB0E3o0hc8cMMdshqi1Kx76X1Ilt/veSfoi0E2QDjqCUJhaUMzuRh9bz/2pY8HJAQcWC94b1o2m9VKmvLr3vXE7ZHtTlM31tUfK8fQ07yihjB47Uk+zOch/MakeT6dvxQi+Dzb9AlN5fHGo4hmwdci8bqA2fpoTxCQ5AsjxdanBX5NN3rDYFf05+NiIqbzZA+hT59LmDcF94DT+NS5dTVKQWWLpzaUxqIJSXjC4ZAWNh0ZOO8lkRvqxTFtzhzZ/xjEFuCktq/PbnGYiNXMFHNV9Vg7VIPaYM345U6T1epQn9RpTnUFQ2BNVf1Afe6VQryYMJISH2078Pl+SWvtunGzV3C4dMQ9tUxl7KkAqmtf2Y2Lp807po4TXc3e6K/ZUrWBEao9wAkFS27CZRgeAhYA1N9S0bXlGVA5nF+2Kv+5NoSGC63cIHll58W41fd4s8w2gBRzjUOd3Y5P+aIMLCCbOXPuEF1glO/mfBXMUp+O6KalBITNdirD0e2RECkbMpX786nge65fFeWnA5bhWTSLwLrE9EBCEe08laJT3OBZtrNEwC1QeY+n+xJFOTtxYj83qEI7F1Wfal7dRt933FgsLmKKVsE9rKCrkgTLA5WjbNuJxB1NnR2flzd/lwG1ca5hrbniraLAYmcVl5ncMoHvKijePruFX1j3ZYS3ms0R9+T3oc3B1+L3t8CwZtZ+zOk4FBhjCLY57j8IHFNGenFdDN4lDcuOENlrI7fSLg9ZLWA2mbrDyHdIvFtvDR3iklwA77jOX1GyWOc9S++jrpDyoBA5iHSFuO0qpZaSWkFj18io6/pK5k5GOLNxUy6S79DNpxWozWMgC46GnLWbE8xVBrXOgNy2X16vTVripG/ihSpZhSfahOa34l3Sfv5h+aulGqzYddvKqvKMyzc0vQCnYv+ZDPXEDszBI1QqscGsetI+day+1R533jFX7TfjGPrbSvVguQj8hWDy4AAjmKdp/dqnaCCbBDuuCY+J+NCtEQrS4TW/9cp5oKhUYg0QK6mbqFh8oRUtQfB5NWwEzkfTZlzPIT58lsVquEyXo+sWI6x/xtv3LL+QpZkUQTXqzkKVT5phL2X2BVPeNoOSVbzekYLkdBY+JxevPKX75Zje/yHCh187+C+Nyl3P7m6zLUxBOaCV25BrSZ7WC2q7m06Q7HULJtZo+76BOHCTyfqiFO9oiIuzlFOsWwcQD14bzlUohgRWPKd/ZTl8XiQfbqbmoTEgZt9Sn5jvgFv3aEFKSJlCHuatQUpKTUk8fD40bQX4XQMgiiF10mQlb2Y2V18Eu683B7imGB+3x+P3xS3CYgB81jH8LlUnDRJ1zfJ0VWu9xkF809D2J+JWcE0cxidsdoY8HgCwS3ORAFxZklu+KvQ+M9IJQaBkxgu9mm0c8xUr57B0Vmeh7wkoWrB7V1KQwmoh8FA3xi86/Dq5Y/9GHd0rzhwhRnNFpDAsgxNKEv2ZTogky2VyAJPo1es+Y0G9M16IAHVSvFdCWN/sUhr0m5aK85PP6kKg1T5wpdv6BXpZvWwbriFAcrQ+3UDhmIMCg6M/gVgjH6kYZhDb+P9Pht8qFa/XFilR8bRsdGV6UJHvru5LSE7hlHdvv6RASha0YoU6QEnPk89bRYR1/Q5EP6iHoREDKEOdGSJXDWBbNjuc1eYGKzgJoxE3jBgZBynJc/Q0NivCXCYcGHprUu4GQd2vOajRz6MXLO/l+CmJKnZW7MVS507w2F1DQo27hIJ8lqYZBSg8Xi0T0LXQiueoLq/1TSwwCEdzw2dNEuuLMM4VAz/AUlmktf0QjEFt0FdpaiRcAbovB4HHvUb7u0cpK6KboFe2XafFuFkhrpAfG/w3SR3HxVYKr+lBmD9iVdaibLkk9LCMWUztDGbhJFjHxiio6uMieCik7GQViiLd0TK77cYSpStZdhqe4pEN23bXsz4OLxcywgrLgqw3PL2z16D5rFP0lvFkY3om8xLoh1MblEKOZt8e3kZ9+TV2ylG0NQ1KYYClEZxw64oz+iu2JPM7CoUodgNI+Z8AH9uTIF5IOXu84znL+yO5iy+wg2ajhCQYxpk4V8sWujmyrslzDQ0Mu1rRFyF8t8C2WQlkiav6FYCq7xHIBBD+Oetm3YNPxtIjOJBkapz5qi+qWzumkSj204FXb"
}
decrpt(res_data)
借鉴 https://blog.csdn.net/weixin_44122586/article/details/132789380