linux多 GPU 环境部署 DeepSeek-R1 模型

配置多 GPU 环境以部署 DeepSeek-R1 模型的详细步骤,包括具体修改文件的位置和内容:

环境准备

  1. 安装 NVIDIA 驱动程序

    • 前往 NVIDIA 官方网站下载适合你 GPU 的最新驱动程序。

    • 安装驱动程序后,可以通过命令行输入 nvidia-smi 来验证驱动程序是否安装成功。

  2. 安装 CUDA Toolkit

    • 根据你的 GPU 驱动程序版本,选择合适的 CUDA Toolkit 版本。例如,如果驱动程序版本是 450.80.02,可以安装 CUDA 11.0。

    • 下载并安装 CUDA Toolkit。安装过程中,确保选择正确的安装路径和组件。

  3. 安装 cuDNN

    • 下载与 CUDA Toolkit 版本相匹配的 cuDNN。例如,CUDA 11.0 对应的 cuDNN 版本是 8.9.7。

    • 解压 cuDNN 文件,并将 binincludelib64 文件夹复制到 CUDA Toolkit 的安装路径下。

  4. 配置环境变量

    • 设置 CUDA_HOME 环境变量,指向 CUDA Toolkit 的安装路径。例如:

      bash复制

      export CUDA_HOME=/usr/local/cuda
    • 将 CUDA 的 bi

### 部署 DeepSeek-R1 模型的方法 要在本地环境中部署 DeepSeek-R1 模型而不依赖 Ollama,可以考虑采用 Hugging Face 的 `transformers` 库来加载并运行该模型。以下是具体实现方式: #### 准备工作环境 确保 Python 和 pip 已安装完毕,在终端或命令提示符下创建一个新的虚拟环境,并激活它。 ```bash python -m venv myenv source myenv/bin/activate # Linux 或 macOS 下 myenv\Scripts\activate # Windows 下 ``` 更新 pip 到最新版本以便顺利安装其他包。 ```bash pip install --upgrade pip ``` #### 安装必要的库 通过 Pip 安装 Transformers 及其依赖项以及其他可能需要用到的工具如 Torch(PyTorch 是许预训练语言模型的基础框架)。 ```bash pip install transformers torch datasets evaluate accelerate ``` #### 加载与推理 DeepSeek-R1 模型 利用 Hugging Face 提供的功能可以直接从云端获取权重文件并在本地实例化模型对象来进行预测操作。下面是一个简单的例子展示如何完成这一过程[^1]。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/deepseek-r1") model = AutoModelForCausalLM.from_pretrained("DeepPavlov/deepseek-r1") input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 需要注意的是,由于 DeepSeek-R1 属于大型语言模型之一,因此对于硬件资源有着较高要求,尤其是 GPU 显存大小方面;如果遇到性能瓶颈,则建议调整 batch size 参数或者尝试量化技术以降低内存占用量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

༒࿈十三༙྇࿈༒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值