分类器训练的小tricks(好用的tricks持续添加中。。。)

本文探讨了如何优化深度学习训练数据,包括去除冗余图片、调整尺寸比例和利用预训练模型进行特征提取。通过分析长宽比分布,筛选合适尺寸的样本,以提高数据多样性。同时,介绍了Class Activation Mapping (CAM)技术用于理解网络关注点,以及t-SNE降维方法在可视化分类走向中的应用,帮助优化模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、特征提取的方法去除训练数据中高度冗余的图片

训练数据不是越多越好,高质量的训练数据是,数据样本尽可能大、数据多样化,数据样本质量较高,但是在实际中,训练样本的量很多,但是多样性不够,这样的训练数据集会导致训练时间很长,网络模型偏向数据量多的种类,增加少样本,或者不常见的样本时,有用的信息被淹没在大量冗余信息中。

训练分类器之前,将训练集中相似度很高的图片去除,虽然数据数量上减少了,但是有用信息没有减少,并且能够缓解类别之间的不平衡。

使用resnet系列在Imagenet上的预训练模型做特征提取器,然后在特征空间计算欧式距离。

下面一组图片的相似性为6.754

在这里插入图片描述
二、通过分析长宽比的分布曲线去除异常尺寸

同类别的样本进行长宽比分布的分析,一般同类别的长宽比是高斯分布,可以计算该高斯的均值mmm和方差σ\sigmaσ,只保留下面尺寸范围的样本:
[m−3∗σ,m+3∗σ][m-3*\sigma, m+3*\sigma][m3σ,m+3σ]
在这里插入图片描述上图是某一个类别的比例分布,实心红点是−3σ-3\sigma3σ3σ3\sigma3σ的位置,我们只保留在这个区间内的样本。

正常样本尺寸比例超出范围的样本
在这里插入图片描述在这里插入图片描述

三、可视化cam,查看网络的关注信息
CAM全称Class Activation Mapping,既类别激活映射图,也被称为类别热力图、显著性图等。是一张和原始图片等同大小图,该图片上每个位置的像素取值范围从0到1,一般用0到255的灰度图表示。可以理解为对预测输出的贡献分布,分数越高的地方表示原始图片对应区域对网络的响应越高、贡献越大。
CAM有助于理解和分析神经网络的工作原理及决策过程,进而去更好地选择或设计网络,还可以利用可视化的信息引导网络更好的学习,例如可以利用CAM信息通过"擦除"或"“裁剪”"的方式对数据进行增强。

原始图片cam图片
在这里插入图片描述在这里插入图片描述

四、可视化t-sne,关注网络的分类走向
t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,对可视化的效果衡量,无非是两方面:相似的数据是不是离得近,不相似的数据是不是离得远。

Resnet101 在 ImageNet上的预训练模型的分类结果:
在这里插入图片描述
Resnet101 在训练数据上6个epoch的分类结果:
在这里插入图片描述

Resnet101 在训练数据上14个epoch的分类结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值