《Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity》阅读笔记

该博客介绍了《Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity》的研究,该研究关注图与图之间的相似性,以无监督的方式学习图的嵌入表示。模型通过多尺度邻居聚合(MSNA)克服图过平滑问题,适用于不同的度量标准。实验部分展示了模型在图分类和相似性排序任务上的应用,以及对超参数敏感性的分析。结果显示,尽管在某些数据集上性能并非最优,但模型能有效捕捉图结构的相似性并实现有意义的可视化效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

这篇文章是做图与图之间的相似性的,可以用于下游的图分类任务等。一般的模型都是根据节点的向量,节点间的邻接关系等“图内”信息来得到该图的表示向量的,这往往忽视了图与图之间的关系。

该模型以完全无监督的、归纳式的方法学习出图的嵌入表示。


论文地址:https://arxiv.org/abs/1904.01098

代码地址:https://github.com/yunshengb/UGraphEmb/tree/3834164acb6295118e708a2a48d3620fc2152f67


一、模型

在这里插入图片描述
每一个图都会经过MSNA生成一个向量,然后根据该向量计算图与图之间的距离。


1.节点向量更新

这里直接用了GIN
在这里插入图片描述


2.生成图向量(MSNA)

现存的一些方法仅简单的用节点向量的加和、平均或稍复杂的聚合方法生成的向量作为该图的全局向量。然而,作者提出的这个模型旨在把每个图变成嵌入空间的一个点,并且能够保留图与图之间的相似程度

1. 在不同层次上捕捉结构差异。随着聚合层数的增多,过平滑问题越来越凸显,模型很难发现相似的图之间的微小差异。

2. 对不同的度量标准都适用。对节点向量的简单聚合限制了图嵌入模型的性能。

为了使模型有上述两个效果,作者提出了MSNA

在这里插入图片描述
∣ ∣ || 代表拼接, K K K为卷积层数, A T T ATT ATT则为多头注意机制。

在这里插入图片描述
N N N为节点数量, σ ( x ) = 1 1 + e x p ( − x ) \sigma(x)=\frac{1}{1+exp(-x)} σ(x)=1+exp(x)1 Θ ( k ) ∈ R D × D \Theta^{(k)}∈R^{D × D} Θ(k)RD×D。为了让分配给节点的注意力系数对不同的度量标准都适用,这里的注意力系数由节点自身的向量以及可学习矩阵共同决定。


二、距离

1.定义

(1).用标签定义。有相同标签的图相似,但该方法不能区分有相同标签的不同的图。

(2).用该领域的知识或由该领域的专家定义。成本高。

(3).用被广泛使用的度量定义。GEDMCS等。


2.损失

GED
在这里插入图片描述

MCS:
在这里插入图片描述

当用于不同的下游任务时,可以加上相应的损失以提高模型的性能。如做图分类任务时,可以再加入有监督损失。


三、实验

1.数据集

在这里插入图片描述
在这里插入图片描述


2.问题1

Q1:将生成的图向量应用于图分类和相似度排序等下游任务时,其质量有多高?

节点分类

在这里插入图片描述

专门为图分类设计的模型(GRAPH KERNELS, GRAPH2VEC, and UGRAPHEMB)在性能上要比专门为节点分类设计的模型(NETMF and GRAPHSAGE)要好。这说明好的节点向量未必就能生成好的图向量。


本文提出的模型在WEB和NCI109两个数据集上的表现不是top2,这可能与这两个数据集的标签较多有关,并且该模型直接用标签的one-hot向量作为节点的初始属性,这限制了模型捕捉差异的能力。另一个原因可能是GED或许并不能很好的识别出不同标签的样本之间的微小差异。

相似性排序

在这里插入图片描述


3.问题2

生成的图向量能否提供有意义的可视化效果?

在这里插入图片描述
在这里插入图片描述
显然,本文提出的模型把有相似子结构的图聚集在一起,即相似度高。

在这里插入图片描述
虽然模型给出的排序与实际排序并不完全一致,但相对位置和排序还是比较合理的。


4.问题3

图向量的质量是否对超参数敏感?

在这里插入图片描述
这里主要探讨了嵌入维度以及训练集样本数对模型性能的影响。


5.MSNA的性能

在这里插入图片描述

在这里插入图片描述



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值