使用方法
1 加载 Model
2 选择图片 image_dir
3 调试model_layers 选择需要的模块
4 显示并保存
layers
Code
import torch
from torchvision import models, transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import imageio
import torchvision.models as models
plt.rcParams['font.sans-serif']=['STSong']
model = models.resnet18(pretrained=True)
# #1.1.模型查看
# print(model)
# model_features = list(model.children())
# print(model_features[4][0]) #取第4层Sequential()中的第0个blk
# #1.2 模型查看
# from torchsummary import summary
# summary(model.cuda(), input_size=(3, 224, 224), batch_size=-1)
#2. 导入数据
# 以RGB格式打开图像
# Pytorch DataLoader就是使用PIL所读取的图像格式
# 建议就用这种方法读取图像,当读入灰度图像时convert('')
def get_image_info(image_dir):
image_info = Image.open(image_dir).convert('RGB')#是一幅图片
# 数据预处理方法
image_transform = transforms.Compose([
transfo