【DL】Pytorch 可视化中间层

本文介绍了如何在Pytorch中进行模型中间层的可视化,包括加载模型、选择图片、指定观察的模型层,以及展示和保存各层的输出效果。通过示例展示了从输入图像到不同深度层的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用方法

1 加载 Model
2 选择图片 image_dir
3 调试model_layers 选择需要的模块
4 显示并保存

layers

在这里插入图片描述

Code
import torch
from torchvision import models, transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import imageio
import torchvision.models as models
plt.rcParams['font.sans-serif']=['STSong']

model = models.resnet18(pretrained=True)

# #1.1.模型查看
# print(model)
# model_features = list(model.children())
# print(model_features[4][0]) #取第4层Sequential()中的第0个blk


# #1.2 模型查看
# from torchsummary import summary
# summary(model.cuda(), input_size=(3, 224, 224), batch_size=-1)


#2. 导入数据
# 以RGB格式打开图像
# Pytorch DataLoader就是使用PIL所读取的图像格式
# 建议就用这种方法读取图像,当读入灰度图像时convert('')
def get_image_info(image_dir):
    image_info = Image.open(image_dir).convert('RGB')#是一幅图片
    # 数据预处理方法
    image_transform = transforms.Compose([
        transfo
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值