
工业缺陷检测学习与实战
文章平均质量分 85
记录自己的学习之路和实战项目
陈子迩
不会写代码的弟弟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
双目立体匹配算法:SGBM
SGBM(Semi-Global Block Matching)是一种用于计算双目视觉中视差(disparity)的半全局匹配算法,在OpenCV中的实现为semi-global block matching(SGBM)。它是基于全局匹配算法和局部匹配算法的优缺点,提出了一种折中的方法,既能保证视差图的质量,又能降低计算复杂度。原创 2024-09-24 09:00:00 · 7692 阅读 · 0 评论 -
双目立体视觉的齿轮端面高度测量
该方法使用单目相机移动固定基线获取双目图像并对图像进行立体矫正,采用改进的半全局立体匹配SGBM算法获取齿轮高精度视差图像和相机坐标系下平面三维坐标点,对上下平面的三维坐标点进行最小二乘拟合,得到上下平面的深度信息,上下平面深度作差即可实现齿轮端面高度的测量,并对提出的双目测量系统及方法进行了实验验证。由工业相机获取双目齿轮图像,通过双目相机标定实现双目图像的立体矫正,采用立体匹配算法获取双目视差,从而得到相机坐标系下平面三维坐标点,处理上下平面的三维坐标点,从而实现齿轮端面高度的测量。原创 2024-09-23 09:29:43 · 1406 阅读 · 0 评论 -
HalCon 怎么繁体字设为简体字
(新版本支持),HD设置菜单,直接切换主题或修改语言重启HDevelpop即可(仅支持简体中文、繁体、英文)。选完结束,重启软件。原创 2024-08-12 14:28:51 · 2461 阅读 · 0 评论 -
工业相机基础知识:像距、物距、焦距的关系
理论上,只有处于镜头焦点距离的景物成像是清晰的,在焦点的前后,光线开始聚集和扩散,成像变得模糊,成像点形成的是一个扩大的圆,这个圆称为弥散圆(circle of confusion)。当物距小于两倍焦距大于焦距时,像距大于两倍焦距,成倒立放大的实像(幻灯机和部分支持微距拍摄的照相机)。当物距在无穷远和两倍焦距之间时,像距在焦距和两倍焦距之间,成倒立缩小的实像(照相机)。当物距小于焦距时,像距为负,在物体的同侧成正立放大的虚像(放大镜)。焦点---通过凸透镜的、平行主光轴的光线,在主光轴上的会聚点。原创 2024-08-11 14:00:00 · 4767 阅读 · 0 评论 -
Halcon编程问题总结
图像旋转、镜像操作是比较耗时的,如果实际工作中如果因为相机安装方向、需要提取 ROI 等工作,可以先提取 ROI 之后再做旋转、镜像,这样可以省下很多时间,我这里测试省下了 150 ms;单次抓图时间约为 250 ms,两个相机约 500 ms,采用两个 Task 同时采集,时间减少一半;黑色背景,文字没有边框,没有阴影。原创 2024-08-11 08:15:00 · 1106 阅读 · 0 评论 -
Cloudcompare软件使用总结
用户可以指定要采样的点的总数(大约),也可以指定表面密度(每平方单位的点数)。注意:理论上,相机传感器可以与Trans中存储的任意数量的4x4变换矩阵(3D旋转和平移的关联)相关联。Rasterize (and contour plot)此工具的主要目的是“栅格化”点云(即将其转换为2.5D网格),然后将其导出为新的云或光栅图像(geotiff)。使用此工具,您可以选择云中的任何点(通过其索引或通过在3D视图中进行选择-带有“点索引”字段旁边的按钮)。但是,首先将3D点云投影在最佳拟合平面上(最小二乘)。原创 2024-08-10 10:41:28 · 1499 阅读 · 0 评论 -
工业相机镜头焦距、工作距离、视野等选型的计算
镜头在成像时,特别是用短焦距镜头拍摄大视场,图像会产生形变,这种情况叫做镜头的畸变,这是由于镜头的光学结构和成像特性导致的,原因是由于视野中局部放大倍数不一致造成的图像扭曲。拍摄的视场越大,所用的镜头的焦距越短,畸变的程度就越明显,一般有桶型畸变和枕型畸变两种,可以通过图像标定减弱这种平面畸变的影响。常见的有1/3", 1/2", 2/3"和 1". 1"的镜头可兼源容1/3", 1/2", 2/3"感光靶. 但1/3"镜头用在1/2", 2/3"和1"感光靶上通常会有暗zhidao角.原创 2024-08-10 08:15:00 · 9311 阅读 · 0 评论 -
机器视觉应用基础: 工业镜头
镜头的光圈排列顺序是:1、1.4、2.0、2.8、3.5、4.0、5.6、8.0、11、16、22、32 等。17.5mm,CS 型接口的后截距为 12.5mm。例如:一个 F/2.8,放大率为-0.5 倍,25mm 镜头的(F/#)W 为 F/4.2。口、F 接口、V 接口、T2 接口、徕卡接口、M42 接口、M72 接口等。连接口,C 型接口和 CS 型接口的螺纹连接是一样的,区别在于 C 型接口的后截距为。定焦镜头:焦距固定,常见的有 8mm、12mm、16mm、25mm、35mm,虽然焦。原创 2024-08-09 18:00:28 · 1406 阅读 · 0 评论 -
相机硬件选型——工业相机和镜头参数简析
工业相机参数列表中一般将传感器尺寸参数描述为靶面尺寸,指的是传感器(工作区域为矩形)对角线长度,单位为英寸,但这里的英寸并不是常规的1英寸等于25.4mm的定义,而是一个历史遗留的标准,通常指的是早期摄像管的尺寸,约为16mm。原创 2024-08-09 17:49:04 · 5204 阅读 · 0 评论 -
YOLOv8常见报错集合(ModuleNotFoundError、NameError、KeyError、nan值及map全为0、 CUDA out of memory、[WinError 145)
执行后又报错在 task.py 中没有 ultralytics 模块, 同样在 task.py 前加入上述代码。batchsize设置处于电脑显存的临界位置,运行过程不稳定,可能前期没有问题,后期出现map为。如果执行后仍然出现该报错,则同样在出现报错的代码前加入该段代码即可。这个没办法,唯一的解决办法是使用cuda10.2的配置。可能训练速度慢一点,但是也勉强能用吧,亲测是有效的。在utils文件下的datasets的第81行,将。打开pycharm的终端,就是最底下的一行。batchsize设置问题。原创 2023-09-13 22:28:36 · 13198 阅读 · 3 评论 -
YOLOv5的常见报错总结
从上面点进~\torch\nn\modules\upsampling.py将forword中的return函数里的最后一个参数删除。如果你是下载别人的数据集进行训练的话,在其他路径配置无误的情况下报这种错说明train.py读取数据集的时候读取之前的缓存文件了。YOLOv6更新了common.py中的SPPF类而v5版本中没有,这个原因我也很迷惑,为啥跟v6有关系呢?执行train.py出现的报错,根据提示肯定是在models的common.py中出现的问题。torch的版本过高导致不兼容。原创 2023-09-12 17:03:00 · 2287 阅读 · 0 评论 -
[WinError 1455] 页面文件太小,无法完成操作和RuntimeError: CUDA out of memory
win10系统下,电脑内存分配是优先程序的,可以在"高级系统设置"–>“高级”–>“性能设置”–>"高级"里修改电脑内存。检查一下数据集的分类,将yaml里的nc改为分类大小即可。这个问题在于gpu,将batch改小一点就好了。主要原因是虚拟内存不足,增加虚拟内存即可。原创 2023-09-12 16:59:34 · 1475 阅读 · 0 评论 -
基于OpenCV实战(基础知识二)
OpenCV是一个流行的开源计算机视觉库,由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包,可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和计算机视觉应用。OpenCV主要使用C++语言编写,同时也支持Python、Java、C等语言。由于其开源和广泛使用的特点,在计算机视觉和机器学习领域得到了广泛的应用。原创 2023-08-25 18:06:55 · 499 阅读 · 0 评论 -
基于OpenCV实战(基础知识一)
OpenCV是一个流行的开源计算机视觉库,由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包,可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和计算机视觉应用。OpenCV主要使用C++语言编写,同时也支持Python、Java、C等语言。由于其开源和广泛使用的特点,在计算机视觉和机器学习领域得到了广泛的应用。原创 2023-08-24 07:00:00 · 799 阅读 · 0 评论 -
从零开始学习YOLOv5 保姆级教程
YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升Input: 输入部分是YOLOv5的起点,接收输入图像并将其进行预处理,将图像大小调整为模型所需的输入尺寸。Backbone: 骨干网络是YOLOv5的核心组成部分,负责从输入图像中提取特征。原创 2023-08-23 07:00:00 · 2408 阅读 · 0 评论 -
opencv如何调用YOLOv5(无pytorch)
YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;原创 2023-08-22 09:00:00 · 3392 阅读 · 3 评论