进击的机器学习 Third Day——简单线性回归模型(Simple Linear Regression)

本文介绍了简单线性回归模型,包括Sklearn、Tensorflow和Numpy的实现。通过Sklearn快速建立模型,然后使用Tensorflow详细解释损失函数和梯度下降法,最后探讨了Numpy求解线性回归的直接法和梯度下降法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天就来学一学简单的线性回归模型(Simple Linear Regession Model),也就是通常所说的单变量线性回归模型。按照上节的分类,它属于监督模型中的回归算法。线性回归模型可以说是很多机器学习模型的基础(Basic)。更重要的是求解线性回归模型中的一些方法,比如梯度下降(Gradient Desecent)等更是被大家所熟知,被用于各种模型当中来求解。梯度下降
线性回归模型可以用来干什么呢?其实用途蛮大的,比如房价预测,股票走势等连续变化量的预测。
废话不多说,本节学习教程分三步:首先Sklearn实现,随后Tensorflow实现,最后Numpy,Pandas两人登场。前两个属于黑盒子,无脑操作;后面一个需要理解算法背后的原理。看大家自己选择喽~~~~数据下载提取码:y6qt
Numpy面前都是弟弟

1、Sklearn的简单线性回归模型(开始花里胡哨一波操作)

#数据:学习时间和分数
    Hours  Scores
0     2.5      21
1     5.1      47
2     3.2      27
3     8.5      75
4     3.5      30
5     1.5      20
6     9.2      88
7     5.5      60
8     8.3      81
9     2.7      25
10    7.7      85
11    5.9      62
12    4.5      41
13    3.3      42
14    1.1      17
15    8.9      95
16    2.5      30
17    1.9      24
18    6.1      67
19    7.4      69
20    2.7      30
21    4.8      54
22    3.8      35
23    6.9      76
24    7.8      86
#一般来说拿到数据,不是直接上模型,首先画出数据图像分布
import matplotlib.pyplot as plt
import pandas as pd
dataset=pd.read_csv(path)#利用pd读取数据,注意路径
x=dataset.iloc[:,:1].values#注意x要是一个二维数组
y=dataset.iloc[:,1].values#注意y是一维数组
plt.scatter(x,y)
plt.xlabel('Time/Hours')
plt.ylabel('Score')
plt.title('Time and Score')
plt.show()

Time and Score

据我推断还是挺符合线性关系的啊(这不是废话嘛)

推理也很好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值