诚之和:Python Pandas知识点之缺失值处理详解

本文详细介绍了在Python的Pandas库中如何处理数据的缺失值,包括识别和处理Pandas中的空值(np.nan、None、pd.NaT)以及自定义缺失值。内容涵盖缺失值的定义、判断、删除和填充方法,提供了多种实用的Pandas函数,如isnull()、dropna()和fillna()等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数据处理的过程中,我们经常会遇到数据有缺失值的情况,今天我们就来介绍一下在python中如何用Pandas处理数据中的缺失值。

一、什么是缺失值

对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。

1. Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull(),isna()进行判断。

isnull()和notnull()的结果互为取反,isnull()和isna()的结果一样。对于这三个函数,只需要用其中一个就可以识别出数据中是否有空值。如果数据量较大,再配合numpy中的any()和all()函数就行了。

需要特别注意两点:

  • 如果某一列数据全是空值且包含pd.NaT,np.nan和None会自动转换成pd.NaT。
  • 空值(np.nan、None、pd.NaT)既不是空字符串"",也不是空格" "。

从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。而不管是空字符串还是空格,其数据类型都是字符串,Pandas判断的结果不是空值。

2. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_45378258

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值