LeetCode55.跳跃游戏(贪心、动态规划)

文章介绍了如何使用贪心算法和动态规划解决LeetCode上的跳跃游戏问题。通过分析给定的非负整数数组,判断是否能从第一个下标到达最后一个下标。贪心算法从前往后以最大跳跃长度推进,而动态规划则从后往前计算可达范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跳跃游戏

题目描述

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标。

输入示例

示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:
1 <= nums.length <= 3 * 104
0 <= nums[i] <= 105

解题思路

1、贪心算法
(1)按最大长度跳,能超过最后一个下标,就说明无论如何都可以到达
(2)逆向,从最后面往前走
2、动态规划
设dp[i]表示从第0层走到第i层时剩余步数

代码实现(java)

1、贪心算法

class Solution {
    public boolean canJump(int[] nums) {
    	int reach = 1;
        for(int i=0; i < reach && reach < nums.length; ++i){
            reach = Math.max(reach, i + 1 + nums[i]);
        }
        return reach >= nums.length;
    }
}
class Solution {
    public boolean canJump(int[] nums) {
    	int reach = nums.length - 1;
        for(int i = nums.length - 2; i >= 0; --i){
            if( i + nums[i] >= reach)
                reach = i;
        }
        return reach == 0;
    }
}

2、动态规划

class Solution {
    public boolean canJump(int[] nums) {
    	int[] dp = new int[nums.length];
        dp[0] = 0;
        for(int i = 1; i < nums.length; ++i){
            dp[i] = Math.max(dp[i-1], nums[i-1]) - 1;
            if(dp[i] < 0)
                return false;
        }
        return dp[nums.length - 1] >= 0;
    }
}

文章部分解题思路来自网络
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/jump-game

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值