一、简介
就目前而言RAGFlow在知识库方面还是比dify强的,因此如果dify能和ragflow联合使用,那么效果岂不是更强,现在教程来了。
文章首发公众号 DataSpeed 欢迎关注。
二、RAGFlow部署
RAGFlow部署要求如下:
- CPU ≥ 4 cores (x86);
- RAM ≥ 16 GB;
- Disk ≥ 50 GB;
- Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1.
当前要下载0.17.2 stable 版本,否则会出现问题,如系统模型设置不了。
系统会在默认浏览器中打开登录地址http://localhost/login。
点击注册,来注册一个账号。
使用上并没有什么门槛,和dify差不多,只要做好模型配置,就能配置知识库。
三、RAG配置模型
关于知识库的部分需要LLM与RERANK模型,添加方式与dify相似。
四、RAG知识库
上传文档后,进行解析,需要全部解析完才能使用,对于单个文档比较多的情况,会比较慢。
上传完成后,尝试使用一次。
五、dify+ragflow
5.1 ragflow中操作
在RAGFlow中创建一个api key
+
找到知识库id,如下图
5.2 在dify中操作
在dify中添加外部知识库
-
API Ednpoint:填写http://<ragflow地址>:9380/api/v1/dify
-
apikey:填写刚才在ragflow创建好的apikey,点击保存
正确填写信息后,保存,如下。
在创建知识库中,选择连接外部知识库:
需要正确填写直接准备的知识库ID
这样知识库就完成了,下面适用一下,以聊天助手类为例,添加外部知识库,即可。
设置后添加一个具体的问题
非常成功。