【问题思考总结】为什么跳跃间断点变上限积分连续但是不可导?【直观理解 几何方法】

本文探讨了变上限积分的可导性和连续性,并通过几何意义解释了函数的不同间断点(如可去间断点和跳跃间断点)如何影响变上限积分的性质。

问题

在搜索变上限积分相关知识的时候,对于间断点对变上限积分的影响不是很了解,找了很多资料都是严谨地证明,对于我这种考研只想把公式记下来,然后有一定理解的要求显然不符合,因此,在这里总结一种几何的理解

理解

先看结论:

1.当函数连续时,变上限积分一定可导。

举例:
在这里插入图片描述
我们可以想象一下,讨论变限积分的可导性,其实就是讨论变限积分的变化率积分是面积,那么变化率是什么呢?想象一个极小的区间【x,x+Δx】,变化量就是Δx*fx(因为是极小的区间,因此以直代曲,变化量是一个矩形)

那么变化率就是矩形的面积除以Δx,也就是fx。那么讨论可导性,导数是fx,fx存在则导数存在,那么fx连续,自然导数处处存在

2.函数有可去间断点,变上限积分可导

举例:
在这里插入图片描述
这个地方是一个难点,包括公式证明的时候,对于这一个没有定义的点也是比较麻烦(采取了用极限值代替函数值的方法,但是本质上实际上还是用了几何意义,因此我们这里直接用几何意义进行说明)

之前我们提到,函数值存在就是导数存在。那么在这个区间上,有函数值不存在的点我们应该怎么考虑呢

在之前的文章中提到过:一个极限是一个无穷逼近的过程,是一个函数,限定了他可以无限地接近一点

【问题思考总结】一个大于0的数乘以无穷大一定是无穷大吗?【关于定点和动点,数和函数,定区间和变区间的辨析】

但是实际上,极限即使再小,他也是和一个邻域相关,因此本质上是一个区间
在这里,我们的间断点实际上是一个点,那么它对应的面积是一条线的面积也就是0(Δx乘以函数值是有面积的),因此,这个间断点对面积的影响可以忽略不计,因此,对面积的变化率即积分的导数也就是没有影响。间断点没问题,整个函数自然也没问题了,等同于情况1。(好抽象)

3. 函数有跳跃间断点,变上限积分连续但是不可导

举例:
在这里插入图片描述
在这种情况下,刚才说的,线不影响面积,也不影响变化率,那么这个不是必然可导吗?
实际上不是的,因为之前这种说法成立是建立在fx除间断点,其他地方都是连续变化的。即在可去间断点的左右两侧**,左极限等于右极限。而这里显然不成立**。

因为我们这个变化率是用邻域定义的,考虑fx的左右极限,易证左极限不等于右极限(左边的变化率不等于右边的变化率),因此,面积在该点的变化率不存在,即变限积分在该点的导数不存在这种方法也可以说明变限积分在可去间断点上的导数存在,但是这种方法说明不存在要更好一些,因为在可去间断点中涉及到补充定义的问题

而又因为面积是逐渐变化的,因此,在面积的图象上是连续的,只不过是有尖点
举例:
在这里插入图片描述
或者简洁一点记忆:函数越积分性质越好,因此之前有间断点的,积分完一定连续,之前连续的,积分完一定可导。

总结

变上限积分

  1. fx连续,变上限积分可导
  2. fx可去,变上限积分可导
  3. fx跳跃,变上限积分连续但是不可导

相关知识(个人总结)

可积性(定积分)

必要条件:可积则区间上一定有界
充分条件:

  1. 连续必可积
  2. 有界且只有有限个间断点(第一类或者震荡)

原函数的存在性

  1. 连续一定有原函数
  2. 第一类间断点一定没有原函数
  3. 第二类间断点可能有原函数

有兴趣的小伙伴可以查一下证明。
以上均为思考和总结,如果有错误的地方请帮忙指正,定会致谢,欢迎博友一起讨论。

### 上限积分的定义及其与原函数的关系 #### 1. 上限积分的定义 上限积分是一种特殊的定积分形式,它将积分上限视为量。具体来说,设函 $ f(x) $ 在区间 $[a, b]$ 上连续,则对于任意 $ x \in [a, b] $,可以定义一个新的函 $ F(x) $ 为: $$ F(x) = \int_a^x f(t) \, dt $$ 这里,$ t $ 是积分量,而 $ x $ 是积分上限,因此该表达式被称为 **上限积分**。 根据微积分基本定理的第一部分[^2],如果 $ f(x) $ 连续,则由上限积分定义的函 $ F(x) $ 具有如下重要性质: $$ F'(x) = f(x) $$ 这意味着 $ F(x) $ 是 $ f(x) $ 的一个原函数。 --- #### 2. 原函数的存在性与上限积分 根据原函数存在定理,任何在闭区间上连续的函都至少有一个原函数上限积分正是用来显式构造这样一个原函数方法之一。 - 设 $ f(x) $ 在区间 $[a, b]$ 上连续; - 构造函 $ F(x) = \int_a^x f(t) \, dt $; - 则 $ F(x) $ 就是 $ f(x) $ 的一个原函数,满足 $ F'(x) = f(x) $。 这表明,通过上限积分的形式,可以直接得到给定函的一个原函数。 --- #### 3. 学推过程 为了进一步说明上限积分如何成为原函数的一部分,可以从定义出发进行分析: - 定义 $ F(x) = \int_a^x f(t) \, dt $; - 根据的定义,计算 $ F'(x) $: $$ F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} $$ 展开 $ F(x + h) $ 和 $ F(x) $ 的定义: $$ F'(x) = \lim_{h \to 0} \frac{\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt}{h} $$ 利用定积分的加法性质: $$ \int_a^{x+h} f(t) \, dt = \int_a^x f(t) \, dt + \int_x^{x+h} f(t) \, dt $$ 代入后得: $$ F'(x) = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) \, dt}{h} $$ 当 $ h \to 0 $ 时,根据介值定理,总可以在区间 $[x, x+h]$ 中找到一 $ c $,使: $$ \int_x^{x+h} f(t) \, dt = f(c) \cdot h $$ 于是: $$ F'(x) = \lim_{h \to 0} f(c) $$ 由于 $ c \to x $ (随着 $ h \to 0 $),所以最终得出: $$ F'(x) = f(x) $$ --- #### 4. 几何意义 从几何角度看,上限积分 $ F(x) = \int_a^x f(t) \, dt $ 描述了曲线 $ y = f(t) $ 下方从固定 $ a $ 到动 $ x $ 所围成的面积随 $ x $ 的化情况。而 $ F'(x) = f(x) $ 表明,在每一 $ x $ 处,面积的化率正好等于曲线上对应度 $ f(x) $。 --- #### 5. 示例验证 考虑简单的例子 $ f(x) = e^x $,我们可以通过上限积分构造其原函数。 ```python from sympy import symbols, integrate, exp, diff # 定义符号 x, t = symbols('x t') # 给定被积函 f_t = exp(t) # 计算上限积分 F_x = integrate(f_t, (t, 0, x)) # 对上限积分 dF_dx = diff(F_x, x) print("上限积分:", F_x) print("对其求结果:", dF_dx) ``` 运行结果为: ``` 上限积分: exp(x) - 1 对其求结果: exp(x) ``` 可以看出,上限积分的结果确实是 $ f(x) = e^x $ 的一个原函数。 --- ###
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值