
机器学习
kev_gogo
考研408 人工智能 爬虫 数据可视化 数理基础 周更博主 欢迎讨论交流~ 代码问题可直接评论或私信
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【问题思考】为什么SVM中的w和超平面是垂直的?【SVM】【gemini生成】
理解为什么与超平面垂直,是理解 SVM 几何性质的关键。我们可以从数学和直观两个角度来解释。原创 2025-08-27 14:41:10 · 447 阅读 · 0 评论 -
【问题思考总结】CART树如何剪枝?从CART树的生成到剪枝以及为什么CTt一定小于Ct?【图文】
我想的太多了,总的来说!这里生成算法和剪枝算法都是一样的,生成的时候是一个基尼系数递减的过程,剪枝的时候是基尼系数递增的过程,但是因为有了α的存在,针对于不同的α,生成的树是不同的,对应了不同的对模型复杂度的重视程度。我现在知道的大概就是这些!我觉得这样的说法是大概正确的,在我的认知里,如果里面哪里有错误,恳请不吝赐教!原创 2025-08-01 12:50:21 · 469 阅读 · 0 评论 -
关于回归决策树CART生成算法中的最优化算法详解
首先,一共比如有M个特征,N个样本,对于每一个特征j,遍历其中的N个样本,得到N个值中,最小的值,作为这个特征的最优切分点,而其中的c1,c2是可以直接得到的。然后,遍历这M个特征,得到M个值,取其中最小的值对应的j和s作为最优切分变量和最优切分点分点。原创 2025-07-25 21:59:54 · 335 阅读 · 0 评论 -
【问题思考总结】两个向量之和的二范数公式是什么?
不过似乎还有点懵,留个帖子,后续欢迎大家前来讨论,我们一起进步。原创 2025-07-09 23:04:00 · 234 阅读 · 0 评论 -
为什么要有正则化项?
也就是说,正则化项实际上就描述了模型的参数量,因此,正则化项可以帮助模型减少复杂度(如果复杂度过高,正则项过大,损失函数大,将会被优化)。因为模型复杂度越高,越容易过拟合。过拟合就是由于模型参数量过大,引起的。常常听说正则化项,L1,L2范数,却从未知晓,为何要有正则化项。实际上,正则化的项描述了模型的复杂度。为什么要描述模型复杂度?原创 2025-05-20 20:48:53 · 160 阅读 · 0 评论 -
【大面了解】什么是交替最小二乘法(ALS)?有什么用?
如上图所示,ALS可以将一个稀疏矩阵变为稠密矩阵。那么,ALS是如何做到的呢?首先,随机初始化两个矩阵并构建损失函数,其次,通过不断调整U,P矩阵内元素的大小,来最小化损失函数。最后,当损失函数最小化后,两矩阵相乘,得到的矩阵,就是稠密矩阵,即里面的缺失值,都被填补完毕了。原创 2025-02-07 13:50:09 · 578 阅读 · 0 评论 -
【问题思考总结】什么是正则化以及为什么需要正则化?(L1 L2)
为什么需要正则化?原创 2025-02-06 17:31:47 · 222 阅读 · 0 评论