Prompt` 和 `PromptTemplate` 的作用是什么?举例说明 `PromptTemplate` 动态生成提示词

在 Spring AI 中,PromptPromptTemplate 是构建有效 AI 交互的核心工具,其作用及示例如下:


1. Prompt 的作用

  • 封装输入:将用户问题、指令和上下文包装为结构化请求,作为 AiClient 的输入。
  • 包含元数据:可附加角色信息(如 SystemMessage 设定 AI 行为)、历史对话等。
  • 示例
    Prompt prompt = new Prompt("用一句话解释量子计算");
    

2. PromptTemplate 的作用

  • 动态生成提示词:通过模板引擎将变量注入预定义模板,生成最终 Prompt 对象。
  • 避免硬编码:解耦业务逻辑与提示文本,提升可维护性。
  • 标准化格式:确保提示词结构清晰(如包含指令、示例、约束)。

3. 示例:动态生成提示词

场景

根据用户选择的“编程语言”和“功能描述”,生成代码实现提示。

步骤
  1. 定义模板(使用 { } 占位符):

    String template = """
        你是一名资深{language}开发工程师。请根据以下功能描述,生成符合{language}最佳实践的代码:
        ##### 功能描述 #####
        {description}
        ##### 要求 #####
        1. 添加详细注释
        2. 使用高效实现
    """;
    
  2. 创建 PromptTemplate

    PromptTemplate promptTemplate = new PromptTemplate(template);
    
  3. 注入变量,生成 Prompt

    Map<String, Object> variables = new HashMap<>();
    variables.put("language", "Python");   // 动态传入语言
    variables.put("description", "读取CSV文件并计算某列的平均值"); // 动态功能
    
    Prompt dynamicPrompt = promptTemplate.create(variables);
    
  4. 调用 AI

    AiResponse response = aiClient.generate(dynamicPrompt);
    
生成的最终提示词
你是一名资深Python开发工程师。请根据以下功能描述,生成符合Python最佳实践的代码:
##### 功能描述 #####
读取CSV文件并计算某列的平均值
##### 要求 #####
1. 添加详细注释
2. 使用高效实现

✅ 关键考察点

概念核心作用生产价值
Prompt封装 AI 输入(文本 + 元数据)统一请求格式,传递上下文
PromptTemplate动态生成提示词(变量替换)避免硬编码,支持个性化请求,提升复用性
协作关系PromptTemplate → 生成 Prompt → 输入 AiClient实现提示词与业务逻辑解耦

💡 进阶追问
“若需在模板中添加安全约束(如‘禁止生成暴力内容’),如何设计确保所有生成的提示词都包含此规则?”
期望答案:在系统消息层固定约束(如创建包含 SystemMessagePrompt 基类),或通过 AOP 统一追加安全指令。

<think>好的,我现在需要帮助用户解决关于LangChain4j中Prompt使用方法的问题。用户之前已经询问过,现在需要更详细的示例说明。首先,我需要回顾一下之前的回答相关引用,确保信息的一致性准确性。 根据用户提供的引用[3],提示词模板是LangChain的核心功能之一,用于构建最终的Prompt。用户现在想了解如何在LangChain4j中使用Prompt,特别是具体的示例方法。我需要从现有引用中提取相关信息,并结合LangChain4j的文档或常见用法来组织回答。 首先,用户可能需要知道如何创建提示模板。在Java中,可能需要使用类似Mustache的模板引擎,或者通过LangChain4j提供的工具类来定义模板。例如,引用[3]提到提示模板是构建Prompt的关键,所以需要展示如何定义一个带有变量的模板,如{{question}}。 其次,用户可能需要示例代码,所以需要编写一个简单的Java示例,展示如何创建模板、注入变量,并将模板传递给大模型进行处理。引用[2]中提到了使用Spring BootQwen大模型,所以可能可以结合这些技术栈来举例,但用户的问题更关注Prompt本身,因此示例应保持简洁,专注于Prompt的使用。 接下来,用户可能需要了解动态模板多变量处理。例如,如何处理多个输入参数的情况,或者如何根据不同的场景调整模板结构。这部分需要展示如何扩展模板,使用多个占位符,并说明变量替换的过程。 另外,高级用法如嵌套模板可能也是用户感兴趣的部分。比如,将多个子模板组合成一个主模板,这样可以提高复用性。需要解释如何创建子模板,并在主模板中引用它们,可能通过工具类或方法调用来实现。 然后,结合RAG(检索增强生成)的示例会很有帮助,因为引用[2]提到过如何用LangChain4j搭建RAG系统。可以展示在RAG流程中如何利用Prompt模板整合检索到的上下文用户问题,生成更准确的回答。这部分需要说明如何将检索到的文档列表插入到Prompt中,并确保变量正确替换。 最后,需要确保所有示例符合用户提出的格式要求,如代码块使用正确的语法高亮,数学公式用$...$包裹等。同时,生成的相关问题要围绕Prompt的使用展开,帮助用户深入理解。 现在要检查是否有遗漏点,例如是否正确引用用户提供的引用,是否覆盖了基本高级用法,示例是否清晰易懂。可能还需要确认LangChain4j的具体API是否与示例中的代码相符,比如是否存在PromptTemplate类或工具类的方法,必要时参考官方文档或示例进行调整,确保示例的准确性。 总结回答的结构:先介绍Prompt模板的基本用法,给出简单示例;然后动态模板多变量处理;接着高级用法如嵌套模板;最后结合RAG的示例。相关问题部分则围绕模板设计、变量处理、与RAG整合等提出问题,引导用户进一步探索。</think>以下是如何在LangChain4j中使用Prompt的详细方法示例: ### 一、Prompt模板基础 LangChain4j通过`PromptTemplate`类实现动态提示词,支持变量注入。基本格式采用类似Mustache的`{{变量}}`语法: ```java String template = "请用中文回答:{{question}}"; PromptTemplate promptTemplate = new PromptTemplate(template); // 变量注入 Map<String, Object> variables = new HashMap<>(); variables.put("question", "量子计算的优势是什么?"); Prompt prompt = promptTemplate.apply(variables); // 生成最终prompt ``` ### 二、动态模板示例 支持多变量复杂逻辑: ```java String advTemplate = """ 根据以下上下文: {{context}} 回答这个问题: {{question}} 要求: 1. 使用{{language}}回答 2. 包含3个重点"""; PromptTemplate advPromptTemplate = new PromptTemplate(advTemplate); // 多变量注入 Map<String, Object> params = new HashMap<>(); params.put("context", docs); // 文档列表 params.put("question", "如何预防感冒?"); params.put("language", "中文"); ``` ### 三、高级用法 1. **嵌套模板**(通过工具类组合): ```java String styleTemplate = "用{{tone}}语气改写:{{content}}"; String mainTemplate = "首先进行风格化:{{styledText}},然后分析技术要点"; // 组合模板 PromptTemplate finalPrompt = PromptTemplate.combine( new PromptTemplate(styleTemplate), new PromptTemplate(mainTemplate) ); ``` 2. **RAG集成示例**: ```java String ragTemplate = """ 基于以下知识库内容: {{#each documents}} • {{this}} {{/each}} 请回答:{{query}} """; List<String> retrievedDocs = milvusClient.search("气候变化影响"); // 从Milvus获取文档 Prompt ragPrompt = new PromptTemplate(ragTemplate) .apply(Map.of( "documents", retrievedDocs, "query", "北极冰盖融化速度是多少?" )); String answer = qwenModel.generate(ragPrompt); // 调用大模型[^2] ``` ### 四、最佳实践 1. 变量默认值设置: ```java PromptTemplate.withDefault("format", "Markdown"); ``` 2. 模板版本管理(通过JSON配置): ```json { "templateName": "QA", "content": "问题:{{question}}\n要求:{{requirements}}", "defaults": { "requirements": "回答需包含示意图说明" } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值