聚类算法
1 聚类算法简介
1.1 聚类算法介绍
一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。
目的是将数据集中的对象分成多个簇(Cluster),使得同一簇内的对象相似度较高,而不同簇之间的对象相似度较低。与分类不同,聚类不需要事先给定类别标签,算法根据数据本身的特征自动地将数据分组。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
1.2 聚类算法在现实中的应用
- 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别
- 基于位置信息的商业推送,新闻聚类,筛选排序
- 图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段
1.3 聚类算法分类
- 根据聚类颗粒度分类
- 细聚类
- 粗聚类
根据实现方法分类
- 划分聚类:按照质心分类,主要介绍K-means,通用、普遍
- 层次聚类:对数据进行逐层划分,直到达到聚类的类别个数
- 密度聚类:按数据点的密度来形成簇,DBSCAN聚类是一种基于密度的聚类算法
- 谱聚类:基于图论的聚类算法,计算数据点之间的相似度矩阵
- …
2 聚类API的初步使用
2.1 API介绍
- sklearn.cluster.KMeans(n_clusters=8)
- 参数:
- n_clusters:开始的聚类中心数量
- 整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。
- n_clusters:开始的聚类中心数量
- 方法:
- estimator.fit(x)
- estimator.predict(x)
- estimator.fit_predict(x)
- 计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)
- 参数:
2.2 API使用
随机创建不同二维数据集作为训练集,并结合k-means算法将其聚类,你可以尝试分别聚类不同数量的簇,并观察聚类效果:
创建数据集
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabaz_score
# 创建数据集
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state=9)
# 数据集可视化
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
使用k-means进行聚类,并使用CH方法评估
y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
# 分别尝试n_cluses=2\3\4,然后查看聚类效果
plt.scatter(X[:, 0], X[:, 1]