向Coze学习,我们把这些工作流也开源了

要说现在最火的工作流是什么,那非视频工作流莫属了。我每天也都能接到不少咨询短视频工作流的需求。

这大半年来我们团队也制作和整理了超过 100+ 工作流,其中很大一部分都是现在最火的视频工作流。

为了向Coze开源致敬,这次我们斑码团队也决定开源超过 10+ 工作流送给大家,所有工作流都是实际跑通上线过的。

大家除了可以直接拿来用,还可以用来学习,模仿,并超越。

图片

随便挑几个给大家展示一下:

一、古诗词动画视频

p

图片

二、 翻书动画书单

p (2)

图片

三、老爷爷治愈视频

p (3)

图片

四、家庭教育类视频

p (1)

图片

真的都非常实用啊!

这次送给大家的完整工作流目录如下:

如果你也想持续学习AI技能,欢迎关注我,我会带来更多有价值的内容

更多精彩内容推荐:

-> AI智能体

-> AI私域机器人

-> AI+飞书

-> AI应用

### Coze 工作流介绍与使用 Coze 是一种专注于简化大型语言模型 (LLM) 开发和部署的工作流框架。该框架旨在通过提供一系列模块化组件来加速开发过程并提高效率[^1]。 #### 主要特点 - **集成资源管理**:支持多种数据源接入,方便开发者获取所需训练数据。 - **自动化流水线构建**:内置微调、推理、评估等功能模块,可快速搭建端到端的应用场景。 - **灵活配置选项**:允许用户自定义参数设置,满足不同项目的特定需求。 - **社区贡献丰富**:拥有活跃的开源社区,不断更新和完善各类插件和支持材料[^2]。 #### 安装指南 为了开始使用 Coze,首先需要安装必要的依赖环境: ```bash pip install coze-workflow ``` 接着可以根据官方文档中的指引完成初始化设置。 #### 使用实例 下面是一个简单的例子,展示了如何利用 Coze 进行 LLM 的微调操作: ```python from coze import Workflow, DatasetLoader, ModelTrainer # 创建一个新的工作流对象 workflow = Workflow() # 加载预处理后的数据集 data_loader = DatasetLoader('path/to/dataset') dataset = data_loader.load() # 初始化模型训练器,并指定使用的算法和其他超参 trainer = ModelTrainer(model_name='bert-base', epochs=3) # 将上述组件加入到工作流中执行 workflow.add_step(data_loader).add_step(trainer) workflow.run() ``` 此段代码片段仅作为入门级示范,在实际应用时可根据具体情况进行调整优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值