M1、M2芯片Mac安装虚拟机教学,稳!


前言

一直想着给M1 Mac上安装虚拟机,安装上镜像就起不来。

安装包阿里云盘地址:@https://www.aliyundrive.com/s/dWgUKz8ykNG@@@@

注:分享地址如过期,需要安装包请私信我。


在这里插入图片描述

一、安装

虚拟机选择:
@@@@@@@VMware Fusion@@@@@@@@@

下载后双击打开,安装过程中需要填写序列号
– 序列号获取

安装完成后,新建虚拟机
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
点击存储后,先不用启动,设置下参数。
在这里插入图片描述
建议内存2G往上
在这里插入图片描述
在这里插入图片描述

硬盘建议50G往上
在这里插入图片描述

网络选择:与我的Mac共享
在这里插入图片描述
设置好后,直接启动即可
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
设置下根密码、安装目的地进去点击完成即可。
在这里插入图片描述

++++++++++++++++++++++点击开始安装

二、网络设置

  1. 查看ip ip a
    在这里插入图片描述

  2. 查看内核 uname -r
    在这里插入图片描述

  3. 修改默认ens160网卡找ip

vi /etc/sysconfig/network-scripts/ifcfg-ens160

在这里插入图片描述
esc + :wq 保存退出

重启网络

systemctl restart network
ip a

就可以看到ip了

三、连接SSH客户端

electerm

新建连接
在这里插入图片描述


### 动态规划中最短路径算法的递推公式 动态规划用于解决最短路径问题的核心在于通过状态转移方程来逐步构建最优解。假设存在一个加权图 \( G=(V,E) \),其中 \( V \) 是顶点集合,\( E \) 是边集合,则可以定义从顶点 \( i \) 到顶点 \( j \) 的最短路径长度。 #### 定义递推关系 设 \( D(i,j,k) \) 表示从顶点 \( i \) 到顶点 \( j \) 的最短路径长度,且这条路径只允许经过编号小于等于 \( k \) 的中间节点。那么递推公式如下: \[ D(i,j,k)=\begin{cases} w(i,j), & \text{if } k=0 \\ \min(D(i,j,k-1), D(i,k,k-1)+D(k,j,k-1)), & \text{otherwise} \end{cases} \] 这里 \( w(i,j) \) 表示直接连接顶点 \( i \) 和 \( j \) 边的权重[^4]。 #### 两种情况的推导过程 ##### 情况一:不考虑第 \( k \) 号节点作为中间节点 如果最短路径从 \( i \) 到 \( j \) 不经过任何编号大于 \( k-1 \) 的节点,则此时的状态值保持不变,即: \[ D(i,j,k) = D(i,j,k-1) \] ##### 情况二:考虑第 \( k \) 号节点作为中间节点 当最短路径可能经过编号为 \( k \) 的节点时,需要比较两条潜在路径的长度: 1. **直接路径**:从 \( i \) 到 \( j \) ,其长度由前一步的结果给出,即 \( D(i,j,k-1) \); 2. **间接路径**:先从 \( i \) 经过 \( k \) 再到达 \( j \),总长度为 \( D(i,k,k-1) + D(k,j,k-1) \)[^5]。 最终取两者较小者作为新的状态值: \[ D(i,j,k) = \min(D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)) \] 此公式的本质是利用分治的思想,在每一轮迭代中尝试加入一个新的候选中间节点,并重新评估当前已知的最佳路径。 ```python def floyd_warshall(graph): node_num = len(graph) shortest_path_matrix = [[float('inf')] * node_num for _ in range(node_num)] # 初始化距离矩阵 for i in range(node_num): for j in range(node_num): if i == j: shortest_path_matrix[i][j] = 0 elif graph[i][j]: shortest_path_matrix[i][j] = graph[i][j] # 更新距离矩阵 for k in range(node_num): for i in range(node_num): for j in range(node_num): shortest_path_matrix[i][j] = min( shortest_path_matrix[i][j], shortest_path_matrix[i][k] + shortest_path_matrix[k][j] ) return shortest_path_matrix ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值