关于jupyter notebook 使用tensorflow-gpu 2.0版本 安装及测试 关于cuda以及chdnn的pip安装

本文介绍如何在安装了GeForce RTX 2060显卡的电脑上配置TensorFlow-GPU 2.0环境。通过三个简单步骤实现CUDA 10.0.130和cuDNN 7.6.0的安装,确保jupyter notebook能够顺利运行TensorFlow-GPU 2.0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小编电脑显卡GEFORCE RTX2060 tensorflow目前的版本支持的是cuda10.0
首先配置tensorflow-gpu,是需要独立显卡的,小编刚配置的时候也是踩了非常多的坑。下面把正确的步骤非大家分享一下,也是比较简单。
step1:使用win+R 输入CMD打开命令窗口;
step2:输入conda install cudatoolkit=10.0.130
step3:输入conda install cudnn=7.6.0
上述三步安装完成及配置好了jupyter notebook 使用tensorflow-gpu 2.0的环境。
注意:在使用这三步之前电脑已经安装好了tensorflow-gpu版本,以及anconda。
第一次发帖,有什么问题可以在下方留言。看到会及时回复。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值