17图像锐化与边缘检测

本文详细介绍了图像处理中的三种边缘检测算子:Roberts算子、Prewitt算子和Laplacian算子,通过这些算子可以有效增强图像的边缘细节,提升图像分析的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.csdn.net/Eastmount/article/details/89001702

一.Roberts算子

# Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法
# 常用来处理具有陡峭的低噪声图像
# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('C:/Users/31035/Desktop/yifei/01.jpg')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8 
absX = cv2.convertScaleAbs(x)      
absY = cv2.convertScaleAbs(y)    
Roberts = cv2.addWeighted(absX,0.5,absY,0.5,0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值