Lecture07:双层规划方法

本文探讨了双层规划模型,从斯坦克尔伯格模型出发,解析了数学规划与互补条件的处理方法,涉及MathematicalProgramwithComplementarityConstraint和EquilibriumProblemwithEquilibriumConstraints。特别关注策略提供问题,通过实例介绍了线性化技巧和模型转化,揭示了双层优化在电力市场中的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录

1 双层规划模型

1.1 一个简单的例子

1.2 斯坦克尔伯格模型到双层规划模型

2 求解双层规划

2.1 Mathematical Program with Complementarity Constraint (MPCC)

2.2 互补条件的线性化

2.2.1 Fortuny‐Amat (“Big‐M”) approach

3 策略提供问题(Strategic offering problem)

3.1 问题描述与模型

3.2 生成下层问题的KKT条件

3.3 线性化互补条件

 3.4 模型处理

 4 Equilibrium Problem with Equilibrium Constraints (EPEC)


本系列已发表文章列表:

Lecture01:市场出清问题的优化建模

Lecture1b: 如何由原始线性规划模型得到最优条件和对偶问题

Lecture02:均衡问题-优化问题以及KKT等价

Lecture03: 市场出清机制的理想特性

Lecture05:随机市场出清_运筹码仓的博客-CSDN博客

Lecture06:市场出清问题的鲁棒方法_运筹码仓的博客-CSDN博客


参考书籍:

  1. Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2012). Complementarity modeling in energy markets (Vol. 180). Springer Science & Business Media.
  2. Dempe, S. (2018). Bilevel optimization: theory, algorithms and applications (Vol. 3). TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik.
  3. Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press.
  4. Pozo, D., Sauma, E., & Contreras, J. (2017). Basic theoretical foundations and insights on bilevel models and their applications to power systems. Annals of Operations Research254(1), 303-334.

1 双层规划模型

1.1 一个简单的例子

现在有两个玩家,称为领导者和跟随者,追随者的反应会影响领导者,领导者会预测追随者的反应。

因为追随者是看到领导者的行为之后,自己才行动,因此我们可以将联系约束,放到追随者的优化问题中。于是有:

这里,x和y 是领导者的决策变量,但x在追随者的优化中是参数。所以,双层规划模型是,一个优化问题受制于另一个优化问题的模型。

1.2 斯坦克尔伯格模型到双层规划模型

  一般定义:

 规划过程分为两层:上层规划是领导者的优化问题,下层规划是跟随者的优化问题。

 上层规划受制于下层规划,也就是说下层规划问题本身是作为上层规划问题的约束存在的。

 如果一部分跟随者同时是另一部分追随者的领导者,我们将可以建立起三层规划问题。

2 求解双层规划

2.1 Mathematical Program with Complementarity Constraint (MPCC)

 下层问题被使用KKT条件替换,从而导致双层规划问题变为一个单目标优化程序。此外,在一些案例中,下层问题将被转化为均衡问题,此时方法称为Mathematical Program with Equilibrium Constraint (MPEC).

2.2 互补条件的线性化

2.2.1 Fortuny‐Amat (“Big‐M”) approach

Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation of a two-level programming problem. Journal of the operational Research Society32(9), 783-792.

 使用大M求解问题后,应该检查一下原始互补问题是否成立。

注意事项:

  1. 选择而是用大M方法应该谨慎,因为选择合适的大M值,是一件有挑战性的事情;如果选错了,可能导致次优解或病态条件。

更多的细节参见:

  1. Pineda, S., & Morales, J. M. (2019). Solving linear bilevel problems using big-Ms: not all that glitters is gold. IEEE Transactions on Power Systems34(3), 2469-2471.
  2. Kleinert, T., Labbé, M., Plein, F. A., & Schmidt, M. (2020). There’s no free lunch: on the hardness of choosing a correct big-M in bilevel optimization. Operations research68(6), 1716-1721.

3 策略提供问题(Strategic offering problem)

3.1 问题描述与模型

问题描述

  1. Let’s consider a strategic power producer owning multiple generation units, indexed by i
  2. All generation units belonging to rivals are indexed by –i
  3.  Demands are elastic to price, and indexed by k
  4. No transmission network, unit commitment constraints, and uncertainty (for simplicity)

数学模型:

 策略制定者是领导者,他的目标是最大化收益;于是有:

 注解:

  1. 供给价格在上层模型是变量,在下层模型是参数
  2. 下层模型的所有原始和对偶变量是上层模型的变量

3.2 生成下层问题的KKT条件

 

 从而我们得到MPEC公式如下:

 显然这是一个非线性问题,因为模型中包含互补条件约束。

3.3 线性化互补条件

引入辅助变量,将问题中的互补条件约束进行线性化,则有:

我们得到的仍是一个非线性混合整数规划,即 p_{i}\lambda 项,目前没有现成的求解器去处理它。我们通常想把它转换为混合整数线性规划或者非线性规划。

 3.4 模型处理

 最终,我们将问题转化为混合整数线性规划问题:

 4 Equilibrium Problem with Equilibrium Constraints (EPEC)

 虽然双层规划问题难以求解,但是它是一个十分有用的技术;分解技术和分布式优化技术可以被使用来减轻计算负担。

<think>好的,我需要帮助用户查找CS231n课程中关于TwoLayerNetwork的具体内容,可能是代码实现或教程。首先,我得回想一下CS231n的课程结构和作业安排。根据用户提供的引用,作业分为assignment1、assignment2、assignment3,而TwoLayerNetwork通常可能在assignment1或assignment2中出现,因为那是基础神经网络的部分。 用户提供的引用中提到,作业中涉及Python和Numpy的基础,以及后续的卷积神经网络等更复杂的内容。TwoLayerNetwork应该是一个全连接神经网络,可能包含前向传播、反向传播、损失计算等步骤。根据引用[3],assignment3涉及更高级的主题,所以TwoLayerNetwork更可能在assignment1或assignment2里。 接下来,我需要查看用户提供的引用内容。引用[1]提到官方Python和Numpy教程,这可能与实现TwoLayerNetwork的基础知识相关。引用[2]指出SciPy在课程中的应用,但主要关注Numpy。引用[3]提到作业放在GitHub上,用户可能没有直接访问,但可以引导他们查看课程资料或作业代码。引用[4]是关于环境搭建的问题,可能不直接相关。 用户需要具体的实现或教程,所以应该指引他们查看课程作业的assignment1,通常第一个作业会实现简单的神经网络,比如TwoLayerNet。在CS231n的官方资料中,assignment1一般包括全连接网络、激活函数、损失函数(如Softmax和SVM)的实现。可能的具体内容包括:网络结构初始化、前向传播计算损失、反向传播计算梯度、参数更新等。 此外,用户可能需要参考课程提供的notebook,比如`two_layer_net.ipynb`,里面会有详细的代码示例和解释。同时,官方教程中关于神经网络的部分也会讲解TwoLayerNetwork的实现细节,比如使用Numpy进行矩阵运算,避免显式循环,提高效率。 还需要考虑用户可能遇到的问题,比如梯度检查、超参数调优(学习率、正则化强度)等,这些都是实现TwoLayerNetwork时的关键点。建议用户仔细阅读作业说明和代码注释,并参考提供的Numpy教程来巩固基础知识。 总结步骤:1. 确认TwoLayerNetwork在assignment1中;2. 指导用户查看对应的notebook和代码文件;3. 提示关键实现部分和参考资料;4. 提供相关问题以帮助深入理解。</think>### CS231n中TwoLayerNetwork的实现与教程 CS231n课程中,TwoLayerNetwork(双层神经网络)的实现主要集中在**Assignment1**的作业部分,涉及全连接神经网络的构建与训练。以下是关键内容梳理: 1. **代码实现位置** - 官方作业代码中通常包含`two_layer_net.py`或`neural_net.py`文件,实现网络的前向传播、反向传播和损失计算。 - 具体函数包括: - `loss()`:计算交叉熵损失和L2正则化项 - `train()`:使用随机梯度下降更新参数 - `predict()`:基于学习到的权重进行分类 ```python class TwoLayerNet(object): def __init__(self, input_size, hidden_size, output_size, std=1e-4): self.params = {} self.params['W1'] = std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def loss(self, X, y=None, reg=0.0): # 前向传播计算得分 h1 = np.maximum(0, X.dot(self.params['W1']) + self.params['b1']) # ReLU激活 scores = h1.dot(self.params['W2']) + self.params['b2'] # 反向传播计算梯度 # ...(具体实现参考作业代码) return loss, grads ``` 2. **核心知识点** - **参数初始化**:使用小随机数初始化权重,偏置初始化为零[^1] - **激活函数**:隐藏层使用ReLU($f(x) = \max(0, x)$),输出层使用Softmax - **正则化**:通过L2正则化项$\frac{1}{2}\lambda(||W_1||^2 + ||W_2||^2)$防止过拟合[^2] - **梯度计算**:需手动推导反向传播公式,验证梯度数值计算的正确性 3. **教程资源** - 官方Python/Numpy教程:[CS231n Python Tutorial](http://cs231n.github.io/python-numpy-tutorial/)(掌握矩阵运算) - 课程讲义:[Neural Networks Part 1](http://cs231n.stanford.edu/slides/2022/lecture_5_2022.pdf)(推导前向/反向传播) - 作业解答指南:[Assignment1解读书籍](https://zhuanlan.zhihu.com/p/21360434)(中文解析) 4. **调试技巧** - 使用数值梯度检验(gradient check)验证反向传播实现正确性: $$ \frac{f(x+h) - f(x-h)}{2h} \approx f'(x) $$ - 先用小数据集(如20个样本)训练,确保损失能快速下降至接近零[^3]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运筹码仓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值