利用卡口数据绘制路段基本图(出入量法)——Python交通数据分析

本文介绍了如何使用Python分析交通卡口数据,特别是通过出入量法绘制路段基本图,对比断面基本图,探讨交通流特性在不同层面的差异,并指出在处理非封闭路段数据时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、卡口数据简介

数据名称 含义
DEVICEID 设备ID
TRAVELID 车辆ID,可分辨车辆
hpzl 车辆类型,1表示大型车,2表示小汽车
SJ 时间
LANEID 车道编号,较长编号表示该位置处于上下游车道过渡区域,无划线;-1表示由于技术原因导致的无效计数,可忽略该检测值
LANNUM 车道数
SPEED 瞬时车速
TURN 车道方向信息,LSR分别表示左直右及其组合,LU和RU分别表示左掉头和右掉头,LC表示上下游车道连接过渡段,表明此断面包含车道变化区域
FTNODE 起始节点
卡口布设简图

在这里插入图片描述

二、路段基本图

绘出东进口道(下游检测器编号504,上游检测器编号508)的路段基本图,与断面基本图对比。

交通流特性(流速密)在断面、路段上的区别
利用卡口数据绘制断面基本图——Python交通数据分析

import numpy as np
import pandas as pd
from pandas import DataFrame
from numpy import *
import scipy
from scipy import stats
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import matplotlib.dates as mdate
import time

kk_data = pd.read_csv('data/kk_data/kk.csv')
kk_data['SJ'] = pd.to_datetime(kk_data['SJ'])
kk_data['TRAVELID'] = kk_data['TRAVELID'].astype(str)  # 转化为字符串

kk_data_504 = kk_data[kk_data['DEVICEID'] == 504].copy()
kk_data_504 = kk_data_504.sort_values(by = 'SJ')
kk_data_504.rename(columns={
   
   'SJ':'OUT_SJ'},inplace=True)  # 重命名

kk_data_508 = kk_data[kk_data['DEVICEID']==508].copy()
kk_data_508 = kk_data_508.sort_values(by = 'SJ')
kk_data_508.rename(columns={
   
   'SJ':'IN_SJ'}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

弈-剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值