一、卡口数据简介
数据名称 | 含义 |
---|---|
DEVICEID | 设备ID |
TRAVELID | 车辆ID,可分辨车辆 |
hpzl | 车辆类型,1表示大型车,2表示小汽车 |
SJ | 时间 |
LANEID | 车道编号,较长编号表示该位置处于上下游车道过渡区域,无划线;-1表示由于技术原因导致的无效计数,可忽略该检测值 |
LANNUM | 车道数 |
SPEED | 瞬时车速 |
TURN | 车道方向信息,LSR分别表示左直右及其组合,LU和RU分别表示左掉头和右掉头,LC表示上下游车道连接过渡段,表明此断面包含车道变化区域 |
FTNODE | 起始节点 |
二、路段基本图
绘出东进口道(下游检测器编号504,上游检测器编号508)的路段基本图,与断面基本图对比。
交通流特性(流速密)在断面、路段上的区别
利用卡口数据绘制断面基本图——Python交通数据分析
import numpy as np
import pandas as pd
from pandas import DataFrame
from numpy import *
import scipy
from scipy import stats
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import matplotlib.dates as mdate
import time
kk_data = pd.read_csv('data/kk_data/kk.csv')
kk_data['SJ'] = pd.to_datetime(kk_data['SJ'])
kk_data['TRAVELID'] = kk_data['TRAVELID'].astype(str) # 转化为字符串
kk_data_504 = kk_data[kk_data['DEVICEID'] == 504].copy()
kk_data_504 = kk_data_504.sort_values(by = 'SJ')
kk_data_504.rename(columns={
'SJ':'OUT_SJ'},inplace=True) # 重命名
kk_data_508 = kk_data[kk_data['DEVICEID']==508].copy()
kk_data_508 = kk_data_508.sort_values(by = 'SJ')
kk_data_508.rename(columns={
'SJ':'IN_SJ'}