loss出错 [predictions must be >= 0] [Condition x >= y did not hold element-wise:]

本文介绍了一种在TensorFlow中遇到的错误,即预测值小于0导致tf.sqrt()出现NAN的问题。该问题源于tf.sqrt()在0处不可导,解决方法是在输入中加入一个非常小的数来避免这种情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

loss出错 [predictions must be >= 0] [Condition x >= y did not hold element-wise:]

报错代码:
BaseCollectiveExecutor::StartAbort Invalid argument: assertion failed: [predictions must be >= 0]
[Condition x >= y did not hold element-wise:]
[x (model/conv2d_20/Sigmoid:0) = ] [[[[nan][nan][nan]]]…]
[y (metrics/auc/Cast_1/x:0) = ] [0]
[[{{node metrics/auc/assert_greater_equal/Assert/AssertGuard/else/_1/Assert}}]]
[[metrics/recall/assert_less_equal/Assert/AssertGuard/pivot_f/_69/_121]]
原因:
tf.sqrt()开根号导致在0处不可导NAN
解决:
加个很小的数即可

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值