Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt to ‘yolov8m.pt

博客提供了YOLOv8m.pt文件的下载地址https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt ,并说明若缺少该文件,可进入此地址下载并放入相关文件夹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

WARNING ⚠️ no model scale passed. Assuming scale='n'. Transferred 313/391 items from pretrained weights Ultralytics 8.3.13 🚀 Python-3.10.0 torch-2.4.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) engine\trainer: task=detect, mode=train, model=D:\yy\ultralytics-main\yolov8.yaml, data=D:\yy\ultralytics-main\YYAAMMLL\fire.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=2, project=None, name=train33, exist_ok=False, pretrained=D:\yy\ultralytics-main\yolov8n.pt, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train33 WARNING ⚠️ no model scale passed. Assuming scale='n'. from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 431062 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLOv8 summary: 249 layers, 2,690,598 parameters, 2,690,582 gradients, 6.9 GFLOPs Transferred 391/391 items from pretrained weights Freezing layer 'model.22.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks with YOLO11n... Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt'... 100%|██████████| 5.35M/5.35M [00:00<00:00, 11.3MB/s] AMP: checks passed ✅为啥会给我下11n的权重
最新发布
06-25
<think>好的,我现在需要解决用户提出的YOLOv5模型文件yolov5s.pt下载失败的问题。用户遇到的具体错误是“Remote end closed connection without response”,同时他们的环境是Torch 1.13.0+cu116,CUDA版本可能与NVIDIA GeForce RTX 3050 Laptop GPU不兼容。我需要结合用户提供的引用信息,特别是关于CUDA版本和PyTorch兼容性的问题,来给出解决方案。 首先,用户提到的错误信息可能与网络连接问题有关,导致模型文件下载中断。常见的解决方法包括使用代理、手动下载或者更换下载源。但是用户还提到了CUDA兼容性问题,引用[1]和[2]指出RTX 3050和3060的CUDA能力版本sm_86和sm_89与当前安装的PyTorch版本不兼容,需要安装支持更高CUDA版本的PyTorch。例如,引用[1]建议安装CUDA 11.3对应的PyTorch版本,而用户当前使用的是CUDA 11.6(cu116),但可能PyTorch 1.13.0+cu116并不支持sm_86架构。 需要确认PyTorch版本是否支持RTX 3050的CUDA架构。RTX 3050的CUDA能力是sm_86,根据PyTorch官方文档,PyTorch从1.11.0版本开始支持CUDA 11.5,而CUDA 11.5支持sm_86。但用户使用的是Torch 1.13.0+cu116,即CUDA 11.6,理论上应该支持。不过,可能用户的PyTorch安装有问题,或者需要重新安装正确的版本。 另外,模型下载失败可能和网络连接有关,可以尝试手动下载yolov5s.pt文件,然后放到指定目录。同时,检查CUDA和PyTorch的兼容性,可能需要升级或降级PyTorch版本以确保兼容性。例如,根据引用[3],安装正确的CUDA工具包,并确保PyTorch版本与之匹配。 总结下来,解决方案应包括: 1. 手动下载模型文件,绕过网络问题。 2. 检查并确保PyTorch与CUDA版本兼容,可能需要重新安装PyTorch。 3. 配置代理或使用镜像源解决下载问题。 4. 验证CUDA是否正确安装,能够被PyTorch识别。 需要注意步骤之间的顺序,比如先解决CUDA兼容性问题,再处理模型下载,或者同时进行。同时,引用用户提供的参考信息来支持建议,比如引用[1]和[3]关于安装匹配CUDA版本的PyTorch的说明。</think>### YOLOv5模型文件下载失败解决方案 #### 1. 手动下载模型文件 **问题原因**:网络连接不稳定或服务器限制可能导致自动下载失败,出现`Remote end closed connection without response`错误。 **解决方法**: - 访问YOLOv5官方GitHub仓库的[Release页面](https://github.com/ultralytics/yolov5/releases),手动下载`yolov5s.pt`文件。 - 将下载的模型文件保存到本地项目的`weights`目录中。 - 在代码中直接指定模型路径: ```python model = torch.hub.load('ultralytics/yolov5', 'custom', path='weights/yolov5s.pt') ``` #### 2. 检查PyTorch与CUDA兼容性 **问题原因**:NVIDIA RTX 3050 Laptop GPU的CUDA架构为`sm_86`,需PyTorch版本支持该架构。当前安装的`torch 1.13.0+cu116`可能未正确适配[^1][^2]。 **解决方法**: - **确认CUDA版本**: 运行`nvidia-smi`查看CUDA版本(如12.2),并访问[PyTorch官网](https://pytorch.org/get-started/locally/)获取对应安装命令。 - **重新安装PyTorch**: 若CUDA版本为11.6,使用以下命令安装适配版本: ```bash pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116 ``` - **验证GPU识别**: ```python import torch print(torch.cuda.is_available()) # 应为True print(torch.cuda.get_device_name(0)) # 应显示"NVIDIA GeForce RTX 3050 Laptop GPU" ``` #### 3. 配置代理或镜像源 **问题原因**:国内用户可能因网络限制导致下载失败。 **解决方法**: - **使用镜像源**: 添加`--proxy`参数或更换pip源: ```bash pip install --proxy=http://user:password@proxy_ip:port some_package ``` 或使用清华源: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some_package ``` - **设置环境变量**: ```bash export HTTP_PROXY="http://proxy_ip:port" export HTTPS_PROXY="http://proxy_ip:port" ``` #### 4. 完整步骤示例 1. 手动下载`yolov5s.pt`并保存到`weights/`目录。 2. 卸载旧版PyTorch: ```bash pip uninstall torch torchvision torchaudio ``` 3. 安装适配CUDA 11.6的PyTorch: ```bash pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116 ``` 4. 验证安装: ```python import torch assert torch.cuda.get_device_capability()[0] >= 8 # 确保支持sm_86 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值