SPDConv代码

在这里插入图片描述

import torch
import torch.nn as nn


def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class SPDConv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        c1 = c1 * 4
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        return self.act(self.conv(x))

if __name__ == '__main__':
    # 初始化 CPAM 模型,输入通道数为 64
    model =SPDConv(64,64)
    # 定义两个输入张量,形状为 [1, 64, 32, 32]

    input1 = torch.randn(1, 64, 32, 32)
    # 将输入张量传入模型,得到输出
    output = model(input1)

    # 打印输入和输出的形状
    print("Input 1 shape:", input1.shape)

    print("Output shape:", output.shape)
    # 计算模型的总参数量,并打印
    total_params = sum(p.numel() for p in model.parameters())
    print(f'Total parameters: {total_params / 1e6:.2f}M')

06-13
### 关于spdconv库或工具在软件开发中的应用 在软件开发领域,`spdconv` 并不是一个广泛使用或标准化的术语[^4]。然而,根据其名称推测,`spdconv` 可能是一个与速度(speed)转换相关的库或工具。以下是一些可能的技术方向和相关背景: #### 1. **潜在的功能领域** - 如果 `spdconv` 是一个库或工具,它可能用于处理速度单位的转换(如从米/秒到公里/小时),或者更广泛的物理量单位转换。 - 它也可能是一个特定领域的工具,例如在嵌入式系统中优化数据传输速度,或者在科学计算中调整算法性能。 #### 2. **编程语言支持** - 在现代软件开发中,许多语言提供了类似的库来处理单位转换。例如,在 Python 中可以使用 `pint` 库[^5]: ```python from pint import UnitRegistry ureg = UnitRegistry() speed = 10 * ureg.meter / ureg.second converted_speed = speed.to(ureg.kilometer / ureg.hour) print(converted_speed) ``` - 如果 `spdconv` 是一个自定义库,它可能基于类似的原理实现。 #### 3. **集成与扩展** - 根据引用内容,LabVIEW 支持与其他编程语言的集成[^2],这表明如果 `spdconv` 是一个外部工具或库,它可以被集成到多语言环境中。 - 类似地,Cognos 的组件工具安装情况可以通过 Capability 显示已安装的工具[^3],这提示我们检查 `spdconv` 是否需要依赖其他工具或库才能正常工作。 #### 4. **代码质量与可持续性** - 在软件开发中,代码的质量和可维护性至关重要。正如引用所述,研究人员可能只关注结果,而软件开发者则更加注重代码本身的质量[^1]。因此,如果 `spdconv` 是一个开源项目,建议评估其代码质量和文档完整性。 #### 示例代码片段 假设 `spdconv` 是一个用于速度转换的 C++ 库,以下是一个简单的用法示例: ```cpp #include "spdconv.h" int main() { double speed_mps = 10.0; // Speed in meters per second double speed_kph = spdconv::convertMpsToKph(speed_mps); std::cout << "Speed in km/h: " << speed_kph << std::endl; return 0; } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值