开源 AI 网络搜索工具:OpenWebSearch MCP 全新升级,支持多引擎 + 流式响应!

🚀 开源 AI 联网搜索工具:Open-WebSearch MCP 全新升级,支持多引擎 + 流式响应!

💡「让你的 AI 插件真正能联网」—— 不需要 API Key,搜索结果可控、开箱即用!

大家好,我最近开源了一个 AI 插件开发工具 —— Open-WebSearch MCP。这个项目旨在解决 AI 在实际应用中无法联网联网费用高昂的问题,特别适合在 Claude、LangChain、RAG 方案中添加“实时搜索”能力。


🧠 项目亮点一览

多引擎实时搜索

  • 支持 Bing百度CSDNDuckDuckGoExaBrave(目前 linux.do 暂不支持)
  • 支持HTTP代理配置,轻松解决网络访问限制
  • 支持HTTP代理配置,轻松解决网络访问限制
  • 可配置引擎组合搜索,获取更全面的内容

流式响应(MCP协议)

  • 完美兼容 Claude 插件(MCP)协议
  • 更新为支持 streamableHttpSSE 两种方式返回搜索结果,体验丝滑流畅

文章正文抓取

  • 支持提取 CSDN 博客文章全文
  • 支持提取 Linux.do(开发中)

完全免费 & 无需 API Key

  • 不再依赖 Bing API / Google Custom Search
  • 可自托管,无额度限制,数据可控

Docker 一键部署

  • 提供 docker-compose 和镜像:ghcr.io/aas-ee/open-web-search

⚙️ 如何使用?

安装非常简单:

git clone https://github.com/Aas-ee/open-webSearch
cd open-webSearch
npm install
npm run build
node build/index.js

或者直接使用 Docker 启动:

docker run -d \
  --name web-search \
  -p 3000:3000 \
  -e ENABLE_CORS=true \
  -e CORS_ORIGIN=* \
  ghcr.io/aas-ee/open-web-search:latest

配置环境变量说明(可选):

# 启用CORS (默认: false)
ENABLE_CORS=true

# CORS来源配置 (默认: *)
CORS_ORIGIN=*

# 默认搜索引擎 (可选值: bing, duckduckgo, exa, brave,默认: bing)
DEFAULT_SEARCH_ENGINE=duckduckgo

# 启用HTTP代理 (默认: false)
USE_PROXY=true

# 代理服务器URL (默认: http://127.0.0.1:10809)
PROXY_URL=http://your-proxy-server:port

配合 Claude Dev Extension、Claude Desktop、Cherry Studio 使用效果更佳!


⚙️ MCP 客户端配置指南

💻 Cherry Studio

{
  "mcpServers": {
    "web-search": {
      "name": "Web Search MCP",
      "type": "streamableHttp",
      "description": "Multi-engine web search with article fetching",
      "isActive": true,
      "baseUrl": "http://localhost:3000/mcp"
    },
    "web-search-sse": {
      "name": "Web Search SSE",
      "type": "sse",
      "description": "SSE version of web search",
      "isActive": true,
      "url": "http://localhost:3000/sse"
    }
  }
}

🔍 Claude Dev Extension (VSCode)

{
  "mcpServers": {
    "web-search": {
      "transport": {
        "type": "streamableHttp",
        "url": "http://localhost:3000/mcp"
      }
    },
    "web-search-sse": {
      "transport": {
        "type": "sse",
        "url": "http://localhost:3000/sse"
      }
    }
  }
}

💻 Claude Desktop

{
  "mcpServers": {
    "web-search": {
      "transport": {
        "type": "streamableHttp",
        "url": "http://localhost:3000/mcp"
      }
    },
    "web-search-sse": {
      "transport": {
        "type": "sse",
        "url": "http://localhost:3000/sse"
      }
    }
  }
}

如果你是 Docker 部署,请把 localhost 换成实际 IP 地址


🧩 MCP 工具支持

🔍 search:多引擎搜索工具

{
  query: "Claude 插件开发",
  limit: 5,
  engines: ["bing", "csdn"]
}

✅ 返回结构化数据(标题、URL、摘要、来源)


📄 fetchCsdnArticle:提取 CSDN 文章全文

{
  url: "https://blog.csdn.net/xxx/article/details/xxx"
}

✅ 获取正文,支持摘要分析、RAG、训练语料等场景


🧪 fetchLinuxDoArticle:抓取 Linux.do 文章(目前不稳定)


📦 CI/CD:支持 Docker 镜像自动构建发布

如果你想 Fork 并发布自己的版本,也完全没问题:

  • 支持 GitHub Actions 自动构建并发布到:

    • GitHub Container Registry(ghcr.io)
    • 阿里云容器镜像服务(可选配置 ACR)

✅ 提供详细 CI/CD 配置文档
✅ 开发者可自由部署在内网、私有云环境下


🧱 后续计划

🛠 支持更多搜索引擎(Google、知乎、Reddit)
🛠 支持文档类内容全文抽取(如微信公众号、掘金)


⭐ 项目地址

🧩 GitHub 地址:https://github.com/Aas-ee/open-webSearch
📦 Docker 镜像:ghcr.io/aas-ee/open-web-search:latest

如果你觉得这个项目对你有帮助,请 Star 一下再走 💖,你的支持是我继续迭代的最大动力!


📣 一句话总结:

「Open-WebSearch MCP:让你的 AI 插件真正实现联网搜索,开源、免费、灵活、强大。」


<think>好的,用户的问题是关于Spring AI Starter MCP Server WebMVC的配置和使用方法。我需要先回忆一下之前提到的相关信息,特别是引用[1]中提到的Spring AI MCP通过Spring Boot集成扩展了MCP Java SDK,提供客户端和服务器启动器。用户现在想具体了解这个项目的配置和使用步骤,可能需要分步骤指导。 首先,我应该确认项目的依赖配置,比如Maven的pom.xml或者Gradle的build.gradle。然后,可能需要引导用户如何初始化项目,比如使用Spring Initializr添加依赖。接下来是配置文件的设置,比如application.properties中的服务器端口和其他参数。然后,可能需要创建控制器或者服务类,使用Spring MVC的注解来处理请求。另外,可能需要提到如何启动应用并进行测试,比如通过curl命令或者Postman发送请求。 同时,用户可能遇到的问题,比如依赖未正确引入,配置项遗漏,或者端口冲突,也需要在注意事项里提到。此外,参考之前的引用内容,确保引用的架构部分被正确提及。最后,生成的相关问题需要围绕配置扩展、客户端使用、日志调试和安全性展开,帮助用户进一步探索。需要检查是否所有步骤都清晰,并符合用户的技术水平,避免使用过于专业的术语,但保持准确性。</think>### Spring AI Starter MCP Server WebMVC 配置与使用指南 #### 一、项目初始化配置 1. **添加依赖** ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server-webmvc</artifactId> <version>${spring.ai.version}</version> </dependency> ``` 建议通过Spring Initializr创建项目时勾选"Spring Web"和"Spring AI MCP Server"模块[^1] 2. **配置文件示例** (`application.properties`) ```properties server.port=8080 spring.ai.mcp.endpoint=/ai/api spring.ai.mcp.model-provider=openai spring.ai.mcp.api-key=${YOUR_API_KEY} ``` #### 二、核心功能实现 1. **创建控制器** ```java @RestController @RequestMapping("/ai/api") public class AiController { @PostMapping("/query") public ResponseEntity<AiResponse> handleQuery( @RequestBody AiRequest request) { // 调用MCP SDK处理请求 return new ResponseEntity<>(process(request), HttpStatus.OK); } } ``` 2. **服务配置类** ```java @Configuration @EnableMcpServer public class McpConfig { @Bean public ModelProvider modelProvider() { return new OpenAIModelProvider(); } } ``` #### 三、运行与测试 1. **启动类配置** ```java @SpringBootApplication public class McpServerApplication { public static void main(String[] args) { SpringApplication.run(McpServerApplication.class, args); } } ``` 2. **测试请求示例** ```bash curl -X POST http://localhost:8080/ai/api/query \ -H "Content-Type: application/json" \ -d '{"prompt":"解释量子计算原理"}' ``` #### 四、注意事项 1. API密钥需通过环境变量或配置中心管理 2. 默认使用OpenAI模型,可扩展其他AI服务商 3. 建议启用Spring Security进行接口保护
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Aasee.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值