自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 CAMEL框架下的Multi-Agent协同(task1)

1、先进入项目文件夹,再uv创建虚拟环境,再进入虚拟环境,再安装依赖库和包,注意这个顺序2、Jupyter notebook要在这个环境下重新安装,最后再进入。3、进入虚拟环境之后,可以直接pip install安装,dotenv库也要重新安装。

2025-07-16 17:47:13 210

原创 VSCode远程SSH连接阿里云服务器ECS实例

3、找到本地创建的密钥对的公钥和密钥,一般公钥会保存在"C:\Users\YIhuan wung\.ssh\id_rsa.pub",私钥会保存在"C:\Users\YIhuan wung\.ssh\id_rsa"点击进去,然后把本地创建的公钥内容打开复制进去,完成上传公钥和绑定,上图显示的是已经完成绑定vscode本地公钥了。2、在本地创建密钥对,直接cmd输入:邮箱替换成自己的邮箱,然后一路回车运行直至结束。1、首先创建好阿里云服务器ECS实例(这一步简单,直接跳过)

2025-07-16 01:35:37 249

原创 RAG入门 | 202507学习心得(class 1)

首先在网址中选择自己喜欢的模型,这里我选择的时GLM-Z1-Flash模型,然后在。

2025-07-15 22:56:17 258 2

原创 Linux下部署deepseek R1流程及问题记录

本文介绍了在Linux系统下载并部署7B参数deepseek-r1模型的两种方法:1)通过官网指令下载,但速度较慢时建议使用国内镜像源;2)手动下载对应版本(需根据CPU架构选择)。安装后需检查版本并启动服务,若端口冲突可修改端口号。最后通过ollama命令下载并运行deepseek-r1:7b模型,使用ollama list查看已下载模型,ollama run启动对话测试。文中提供了详细的错误处理方案和参考博客链接。

2025-06-17 13:11:42 317

原创 yolov11的onnx模型C++ 调用的问题记录

解决办法:imgsize不是400,不能把_netWidth 和_netHeight从原来的640修改成400,imgsize应该根据在onnx模型导出的时候可以看到。:imgsize是416,把400改成416就好了。

2025-05-30 16:34:04 227 1

原创 解决报错:RuntimeError: cuFFT error: CUFFT_INTERNAL_ERROR

解决方法:更换虚拟环境,

2025-05-17 12:31:19 363

原创 YOLO11实例分割实战

使用labelme,在里面配置SAM分割一切模型,辅助标注得到所有图像的json文件检查json格式文件,确保,表示多边形点坐标),避免是表示矩形框坐标宽高)

2025-05-13 17:41:40 1280

原创 LM Studio加载DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf本地模型不显示的问题

DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf在国内无法从无法下载后,转而在其镜像网站选择4位模型参数Q4完成了下载,但是在LM Studio的模型目录选项,点击右边路径设置,选择“在文件资源管理器中打开时”始终无法在文件目录下找到提前已经放在这的DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf?很奇怪!

2025-03-29 20:42:07 975

原创 如何从噪声估计网络UNet理解扩散模型能够根据时间步嵌入信息以学习到区分不同加噪阶段的噪声特性?

在扩散模型中,时间步 t 是模型生成过程中的一个重要参数,代表了扩散过程所在的进展。对于每一个时间步 t ,模型需要知道当前扩散到了哪一步,去噪操作也是如此。但是我们不能简单地将 t 作为一个标量直接输入模型,而是需要通过Time Embedding(类似于Positional embeddings)进行嵌入处理,通过将 t 编码进网络中,更多的原因如下:1、模型可能难以从这个单一的标量数值中提取足够的特征。

2025-03-25 21:01:32 902

原创 如何理解”由于U-Net 骨干特征的低频主导特性使得高频成分主要包含噪声,而下采样操作可以自然地滤除这些高频噪声“?

这种设计使U-Net在保留关键细节的同时,对输入噪声具有鲁棒性,尤其适合医学图像等噪声敏感场景。池化操作(如2×2最大池化)将局部区域的信息压缩为一个值,相当于对图像进行。U-Net的编码器(下采样路径)通过。U-Net的解码器通过。

2025-03-21 20:48:06 407

原创 如何理解DDPM反向去噪推导公式的方差不为0,而DDIM为0?

在 “DDIM (Denoising Diffusion Implicit Models)””中,方差等于0的概念实际上是指在生成过程中去除了噪声的随机性,或者说是生成过程中的 **隐式去噪**。这种情况出现在反向去噪的过程中特定的时刻,即反向过程的推理步骤不再依赖于传统的噪声模型中的随机噪声项,而是通过确定性地进行预测。为了更好地理解这个问题,我们需要深入了解DDIM和DDPM的反向过程的区别。1. DDIM的反向过程:DDIM改进了DDPM的反向过程,通过隐式去噪(Implicit Denoising

2025-03-13 23:39:00 1226

原创 DDPM与DDIM的区别与联系

上图中DDIM反向步骤公式详解:其中的和实际可以相隔多个迭代步数,其中DDPM中,而。

2025-03-13 22:33:03 336

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除