剑指 Offer 51. 数组中的逆序对(归并排序)

本文介绍了如何使用归并排序算法解决数组中逆序对计数的问题。通过分治策略,将数组不断拆分成小的子数组进行排序,并在合并过程中计算逆序对的数量。详细阐述了归并排序的步骤,并提供了两种不同实现方式的代码示例。重点在于理解归并排序过程中如何有效地计算逆序对,从而避免暴力求解导致的时间复杂度过高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]
输出: 5

限制:

0 <= 数组长度 <= 50000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof


一、解题思路(归并排序)

在此题目中,如果使用暴力法遍历统计逆序对数量,时间复杂度为O(n2),本题数组长度:0 <= 数组长度 <= 50000,铁定超时了(因为我试过)。

归并排序逆序对是息息相关的,归并排序是一种分而治之的算法思想

在这里插入图片描述

  • : 不断从中间点将数组一分为二,将数组的排序转为子数组的排序
  • : 划分到子数组长度为 1 时,向上合并,直至合并至完整数组;
    (如上图所示)

我在归并排序代码中打印了排序的过程如下:

--------------------
排序前:[7, 3]
排序后:[3, 7]
现数组:[3, 7, 5, 1, 6, 4, 8, 2]
--------------------
排序前:[5, 1]
排序后:[1, 5]
现数组:[3, 7, 1, 5, 6, 4, 8, 2]
--------------------
排序前:[3, 7, 1, 5]
排序后:[1, 3, 5, 7]
现数组:[1, 3, 5, 7, 6, 4, 8, 2]
--------------------
排序前:[6, 4]
排序后:[4, 6]
现数组:[1, 3, 5, 7, 4, 6, 8, 2]
--------------------
排序前:[8, 2]
排序后:[2, 8]
现数组:[1, 3, 5, 7, 4, 6, 2, 8]
--------------------
排序前:[4, 6, 2, 8]
排序后:[2, 4, 6, 8]
现数组:[1, 3, 5, 7, 2, 4, 6, 8]
--------------------
排序前:[1, 3, 5, 7, 2, 4, 6, 8]
排序后:[1, 2, 3, 4, 5, 6, 7, 8]
现数组:[1, 2, 3, 4, 5, 6, 7, 8]

我们截取这一段看看图解如下:

排序前:[4, 6, 2, 8]
排序后:[2, 4, 6, 8]
现数组:[1, 3, 5, 7, 2, 4, 6, 8]

在这里插入图片描述

在这个图中:
left是4的下标,right是8的下标,所以mid就是6的下标。
初始化 i 等于 left,j 等于 mid + 1。
当 nums[i]<=nums[j] 时 , 把 nums[i] 添加到辅助数组中,并i++;
当 nums[i]>nums[j] 时,把nums[j] 添加到辅助数组中,并j++。而因为我们要计算逆序对,我们可以在这个基础上 res+=mid-i+1 ,从而计算逆序对的值。

为什么是 res+=mid-i+1 呢?
这是因为 [left,mid] 与 [mid+1,right] 都是有序序列,当 [left,mid] 序列中有nums[i]>nums[j] ,则有 [i,mid] 中所有的数都大于nums[j]。

二、代码

归并操作的工作原理如下:

  • 第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  • 第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
  • 第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空
    间,并移动指针到下一位置
  • 重复步骤3直到某一指针超出序列尾
  • 第四步:将另一序列剩下的所有元素直接复制到合并序列尾
  • 第五步:覆盖
	//易理解版本  利用归并排序特性,在此基础上,
    //当nums[temp1]>nums[temp2],res+=mid-temp1+1
class Solution {
    int count;
    public int reversePairs(int[] nums){
        this.count =0;
        merge(nums,0,nums.length-1);
        return count;
    }
    //分
    public void merge(int[] nums,int left,int right){
        if(left<right){ 
            int mid = left+((right-left)>>1);
            merge(nums,left,mid);
            merge(nums,mid+1,right);
            mergeSort(nums,left,mid,right);
        }
    }
    public void mergeSort(int[] nums,int left,int mid,int right){
    	//1
        int[] temparr = new int[right-left+1];
        int index = 0;
        //2
        int temp1=left,temp2 =mid+1;
		//3
        while(temp1<=mid&&temp2<=right){
            if(nums[temp1]<=nums[temp2]){
                temparr[index++]=nums[temp1++];
            }else{
                count+=mid-temp1+1;
                temparr[index++]=nums[temp2++];
            }
        }
        //4
        while(temp1<=mid){
            temparr[index++] = nums[temp1++];
        }
        while(temp2<=right){
            temparr[index++] = nums[temp2++];
        }
        
        //5 把新数组temparr[]覆盖nums[left,right]
        for(int i =0;i<temparr.length;i++){
            nums[left+i]=temparr[i];
        }
    }
}

思路一样,代码精简点:

class Solution {
    int[] nums, tmp;
    public int reversePairs(int[] nums) {
        this.nums = nums;
        tmp = new int[nums.length];
        return mergeSort(0, nums.length - 1);
    }
    private int mergeSort(int l, int r) {
        // 终止条件
        if (l >= r) return 0;
        // 递归划分
        int m = (l + r) / 2;
        int res = mergeSort(l, m) + mergeSort(m + 1, r);
        // 合并阶段
        int i = l, j = m + 1;
        for (int k = l; k <= r; k++)
            tmp[k] = nums[k];
        for (int k = l; k <= r; k++) {
            if (i == m + 1)
                nums[k] = tmp[j++];
            else if (j == r + 1 || tmp[i] <= tmp[j])
                nums[k] = tmp[i++];
            else {
                nums[k] = tmp[j++];
                res += m - i + 1; // 统计逆序对
            }
        }
        return res;
    }
}

解析参考Krahets
https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/solution/jian-zhi-offer-51-shu-zu-zhong-de-ni-xu-pvn2h/


侵删

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值