单机多卡训练

该段代码设置了使用GPU4,5,6,7进行多卡测试,主显卡设为4。定义了DCENet模型,并在显卡数量大于1时使用DataParallel进行数据并行处理,确保模型能在多个GPU上自动分配运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#---多卡测试---在这里设置显卡号
gpu_ids = [4, 5, 6, 7]#设置用哪几个显卡
device = torch.device("cuda:4")#设置哪个显卡为主显卡
model =DCENet(n=8, return_results=[4, 6, 8])
if len(gpu_ids) > 1:
    model = torch.nn.parallel.DataParallel(model , device_ids = gpu_ids)#重点:自动分配数据
model.to(device)
#---多卡测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值