[lintcode] 392 · 打劫房屋

本文介绍了如何使用动态规划解决一个打劫问题,即在不触动报警装置的情况下,从一排房屋中打劫最多的钱。文章通过分析样例,阐述了状态转移方程的建立过程,并提供了Java代码实现,确保在O(n)时间复杂度和O(1)存储条件下求解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

假设你是一个专业的窃贼,准备沿着一条街打劫房屋。每个房子都存放着特定金额的钱。你面临的唯一约束条件是:相邻的房子装着相互联系的防盗系统,且 当相邻的两个房子同一天被打劫时,该系统会自动报警

给定一个非负整数列表,表示每个房子中存放的钱, 算一算,如果今晚去打劫,在不触动报警装置的情况下, 你最多可以得到多少钱 。

样例

样例 1:

输入: [3, 8, 4]
输出: 8
解释: 仅仅打劫第二个房子.

样例 2:

输入: [5, 2, 1, 3] 
输出: 8
解释: 抢第一个和最后一个房子

挑战

O(n) 时间复杂度 且 O(1) 存储。

思路:这道题也是一道非常典型的状态转移题目。前i个房子,只有可能有两种状态(偷和没偷)。

        如果当前项选择不偷,当前最大值取前面转态最大值。

        如果当前项选择偷,当前状态只能是前一项不偷的状态转移过来的。

public class Solution {
    /**
     * @param A: An array of non-negative integers
     * @return: The maximum amount of money you can rob tonight
     */
    public long houseRobber(int[] A) {
        if(A.length==0) return 0;
        long[][] dp = new long[A.length][2];
        for(int i=0;i<A.length;i++){
            if(i==0){
                dp[0][0] = 0;
                dp[0][1] = A[0];
            }
            else{
                dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]);
                dp[i][1] = A[i]+dp[i-1][0];
            }
        }
        return Math.max(dp[A.length-1][0], dp[A.length-1][1]); 
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值