MobileNet与HybridSN 高光谱图像分类

目录

一、MobileNet

1.MobileNet V1

2.MobileNet V2

3.MobileNet V3

二、HybridSN高光谱图像分类

三、思考


一、MobileNet

1.MobileNet V1

传统卷积神经网络,内存需求大,运算量大,导致无法在移动设备以及嵌入式设备上运行。

MobileNet网络专注于移动端或嵌入式设备中的轻量级CNN网络,相比于传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量,相比于VGG16准确率减少0.9%,但是模型参数只有VGG的1/32。

MobileNet网络中的亮点:

  • Depthwise Convolution(大大减少运算量和参数数量)
  • 增加超参数\alpha\beta(\alpha控制卷积核个数,\beta控制输入图片的大小,这两个参数是人为设定的)

 传统卷积与DW卷积的区别:

 通常DW卷积与PW卷积放在一起使用:

 理论上普通卷积计算量是DW+PW的8到9倍。

2.MobileNet V2

MobileNet V2相比于MobileNet V1准确率更高,模型更小。

网络中的亮点:

  • Inverted Residuals(倒残差结构)
  • Linear Bottlenecks

 MobileNet V2使用的是ReLU6激活函数:

 MobileNet V2中倒残差结构如下:

 当stride=1且输入特征矩阵与输出特征矩阵shape相同时才有shortcut连接。

3.MobileNet V3

网络亮点:

  • 更新Block(bneck)
  • 使用NAS搜索参数(Neural Architecture Search)
  • 重新设计耗时层结构

 MobileNet V3相比于MobileNet V2更准确,更高效。

 更新Block包括:加入SE模块和更新了激活函数。

 

 

 重新设计耗时层结构:

1.减少第一个卷积层的卷积核个数(32->16)

2.精简Last Stage

 

 重新设计激活函数:

swish(x) = x.\sigma(x)替换为h-swish(x) = x.\frac{ReLU(x+3)}{6}

其中\sigma(x) = \frac{1}{1+e^{-x}}ReLU6(x) = min(max(x,0),6)

二、HybridSN高光谱图像分类

首先取得数据,并引入基本函数库:

! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indi
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值