文献阅读:将条形码神经解剖学与空间转录分析相结合,可以识别投射神经元相关基因

本文介绍了一篇名为Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections的文献。该文献由美国冷泉港实验室的Anthony M. Zador团队于2021年5月10日发表在Nature Neuroscience期刊,影响因子24.8,DOI为10.1038/s41593 - 021 - 00842 - 4。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文献介绍

alt

「文献题目」 Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections
「研究团队」 Anthony M. Zador(美国冷泉港实验室)
「发表时间」 2021-05-10
「发表期刊」 Nature Neuroscience
「影响因子」 24.8
「DOI」 10.1038/s41593-021-00842-4

摘要

功能环路由具有不同轴突投射和基因表达的神经元组成。理解投射神经元的分子特征需要在细胞分辨率上同时对基因表达和同一细胞中多个靶点的投射进行高通量询问,这使用目前的技术很难实现。在这里,作者介绍了 BARseq2,一种通过原位测序同时绘制投射并检测多个基因表达的技术。作者确定了 29,933 个细胞中钙粘蛋白和细胞类型标记的表达,以及小鼠 motor cortex (运动皮层) 和 auditory cortex (听觉皮层) 中 3,164 个细胞的投射。在 1,349 个神经元中的相关基因表达和投射显示了两个皮层区域同源投射的钙粘蛋白特征。这些钙粘蛋白在转录组分类的多个分支中富集。通过在单个神经元中高通量将多基因表达和投射到多个靶标相关联,BARseq2 为揭示神经元环路的分子逻辑提供了一种潜在的方法。

研究结果

为了研究钙粘蛋白表达与不同投射的关系,作者开发了 BARseq2,将高通量投射绘制与使用原位测序的基因表达多重检测相结合(Fig. 1b,c)。BARseq2 是基于 BARseq (Fig. 1c),通过 RNA 条形码的原位测序,实现了高通量的投射绘制。使用 BARseq 观察到的投射模式与在多个环路中使用传统神经解剖技术获得的投射模式一致,但它可以实现比最先进的单细胞追踪技术高出至少 2 到 3 个数量级的通量。可能的技术问题,包括对通道纤维与轴突末端的区分、灵敏度、神经元的双标记和条形码的退化,以前已经讨论了这里将不再详细讨论。将条形码单细胞投射绘图与内源性 mRNAs 的原位检测相结合,利用 BARseq 在通量方面的独特优势,有效地同时询问神经元基因表达和长程投射。

Fig.1 使用 BARseq2 进行内源性 mRNAs 的原位测序
Fig.1 使用 BARseq2 进行内源性 mRNAs 的原位测序

a.一个卡通示例模型,投射和基因表达之间的关系只能通过对投射和基因表达的多次询问来正确地推断。在这个模型中,表达两个基因的神经元同时靶向到 A 和 B,而只表达两个基因之一的神经元随机靶向到 A 或 B 中的一种。将单个神经元多基因表达与只有一个投射靶点的数据相结合的方法,将会得到这样的结论:这三种基因表达模式都投射到靶标 A,因此无法检测到基因表达和投射之间潜在的“真实”关系。同样地,将多个单神经元投射与单个基因的数据相结合的方法,也将无法检测到基因表达和投射之间的任何关系。
b-c.BARseq2 相关投射和基因表达在细胞分辨率上 (b)。在 BARseq2 中,神经元用随机的 RNA 序列进行条形编码来实现投射绘制,基因也在相同的条形编码神经元中被测序。RNA 条形码和基因被扩增和读取使用不同的策略(c)。
d.使用组合编码的理论成像周期 (BARseq2),Eng 等人所使用的四通道顺序编码或四通道稀疏编码的理论成像周期。成像周期假设 BARseq2 为三个额外周期,一轮的稀疏编码,没有额外周期的纠错。
e.BARseq2 在使用每个基因不同数量的锁式探针检测指示基因时的相对灵敏度的平均和单个数据点。灵敏度被归一化为使用一个探针每个基因。每个基因 2 个切片 (n=2)。
f.与 RNAscope 相比,使用 e 中显示的最大探针数对指定基因进行 BARseq2 检测的代表性图像。比例尺,10 µm。

为了使用 BARseq2 检测基因表达,作者使用了一种基于无间隙填充锁式探针(non-gap-filled padlock probe-based)的方法来放大目标内源性 mRNAs (Fig.1c)。消除间隙填充是读取极其不同的条形码序列所必需的,它增加了内源性基因检测的灵敏度。在这种方法中,通过使用原位 Illumina 测序化学方法测序基因识别指数 (gene identification index, GII) 来读出靶点的身份。由于 GII 是一个核苷酸条码序列,它唯一地编码给定基因的身份,因此多重编码能力以指数级增长为 4N,其中 N 是测序循环的数量。这种组合编码通过序列读出,从而允许使用少量几个周期的成像来同时检测大量基因 (Fig. 1d)。尽管测序读数提供了许多优势,但必要时 BARseq2 也与基于杂交的读数兼容。内源性基因的原位测序和条形码测序的间隙填充方法相结合,允许许多基因与使用 BARseq2 的投射同时被检测。

作者首先证明,通过优化靶向原位测序,BARseq2 有足够的灵敏度来检测内源性 mRNAs。接下来,作者将内源性 mRNA 的原位测序与 RNA 条形码的原位测序结合起来,将钙粘蛋白的表达与细胞分辨率下的投射模式联系起来。然后,作者通过证明验证了 BARseq2,它可以用于概括转录组神经元亚类型的投射模式,并识别在主要投射类中不同表达的钙粘蛋白。最后,我们确定了小鼠听觉皮层和运动皮层之间共享的钙粘蛋白,它们与两个皮层区域脑内 (IT) 神经元的同源投射相关。

1. BARseq2 稳健地检测到内源性 mRNAs

为了使用 BARseq2 充分检测基因,作者试图提高检测灵敏度。在大多数原位杂交 (in situ hybridization, ISH) 方法中,通过对每个靶点 mRNA 使用多个探针可以提高灵敏度。作者认为,增加每个基因的锁式探针的数量可能同样会提高 BARseq2 的灵敏度。事实上,作者观察到,与使用单个探针相比,使用多个探针的灵敏度增加了 46 倍 (Fig. 1e and Methods)。结合其他技术进行优化(Extended Data Fig. 1a,b),作者将 BARseq2 的灵敏度提高到 RNAScope (一种灵敏的和商业上可行的 FISH 方法) 的 60% (Fig. 1f, Extended Data Fig. 1c,d and Methods)。作者进一步优化了原位测序,以在许多测序周期中稳健地读出单个细胞的 GIIs (Extended Data Fig. 1e–j and Methods)。这些优化允许 BARseq2 实现对 mRNA 进行足够灵敏、快速和稳定的检测。

2. BARseq2 允许原位检测多个 mRNAs

为了评估使用 BARseq2 多重原位检测钙粘蛋白,作者检查了 20 个钙粘蛋白的表达,以及 3 个(听觉皮层)或 45 个(运动皮层)细胞类型标记 (Fig. 2a–c)。作者选择关注钙粘蛋白,因为它们在皮层发育中的作用已知,包括投射特异性,以及它们在由多个属性定义的基本细胞类型之间的差异表达。这些钙粘蛋白类包括大多数经典听觉皮质和运动皮质

基于C2000 DSP的电力电子、电机驱动和数字滤波器的仿真模型构建及其C代码实现方法。首先,在MATLAB/Simulink环境中创建电力电子系统的仿真模型,如三相逆变器,重点讨论了PWM生成模块中死区时间的设置及其对输出波形的影响。接着,深入探讨了C2000 DSP内部各关键模块(如ADC、DAC、PWM定时器)的具体配置步骤,特别是EPWM模块采用上下计数模式以确保对称波形的生成。此外,还讲解了数字滤波器的设计流程,从MATLAB中的参数设定到最终转换为适用于嵌入式系统的高效C代码。文中强调了硬件在环(HIL)和支持快速原型设计(RCP)的重要性,并分享了一些实际项目中常见的陷阱及解决方案,如PCB布局不当导致的ADC采样异常等问题。最后,针对中断服务程序(ISR)提出了优化建议,避免因ISR执行时间过长而引起的系统不稳定现象。 适合人群:从事电力电子、电机控制系统开发的技术人员,尤其是那些希望深入了解C2000 DSP应用细节的研发工程师。 使用场景及目标:①掌握利用MATLAB/Simulink进行电力电子设备仿真的技巧;②学会正确配置C2000 DSP的各项外设资源;③能够独立完成从理论设计到实际产品落地全过程中的各个环节,包括但不限于数字滤波器设计、PWM信号生成、ADC采样同步等。 其他说明:文中提供了大量实用的代码片段和技术提示,帮助读者更好地理解和实践相关知识点。同时,也提到了一些常见错误案例,有助于开发者规避潜在风险。
RA4M2开发IOT(10)----集成LPS22DF气压计 CSDN文字教程:https://coremaker.blog.csdn.net/article/details/148830559 B站教学视频:https://www.bilibili.com/video/BV1DjNmzyEuV 概述 本篇文章将延续现有 “动态显示 MEMS 数据” 的框架,在同一条 I²C 总线上新增 LPS22DF 数字气压计。 项目将具备 惯性 + 气压 的完整环境感知能力,并且借助涂鸦平台可快速把本地大气数据同步到云端,为室内气候监测、爬山/无人机高度预警等场景奠定基础。 硬件准备 首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。 主控为R7FA4M2AD3CFL#AA0 产品特性 LPS22DF是一款超紧凑型压阻绝对压力传感器,可用作数字输出气压计。LPS22DF相比前代产品具有更低的功耗和更小的压力噪声。 该器件包含传感元件和IC接口,该接口通过I²C、MIPI I3CSM或SPI接口实现传感元件应用的通信,同时该器件也支持用于数据接口的广泛Vdd IO。检测绝对压力的传感元件由悬浮膜组成,采用ST开发的专门工艺进行制造。 LPS22DF采用全压塑孔LGA封装(HLGA)。可保证在-40 °C到+85 °C的温度范围都能工作。封装上有开孔,以便外部压力到达传感元件。 260-1260 hPa 的绝对压力范围,适用于多种气压应用。 最低电流消耗可达 1.7 μA,适合低功耗设备。 压力精度达 0.2 hPa,并具备 0.34 Pa 的低噪声和 0.45 Pa/°C 的温度补偿偏移。 通信模式 对于LPS22DF,可以使用IIC进行通讯。 最小系统图如下所示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ 生信宝库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值